15 October 2012

Third Quarter 2012 Groundwater Monitoring Report

Former Powerine Refinery 12345 Lakeland Road, Santa Fe Springs, CA

SLIC No. 0318, ID No. 2040071 CAO 97-118

Prepared on Behalf of

Isola Law Group, LLP Lodi, California

Prepared for

Regional Water Quality Control Board Los Angeles Region

Prepared By

TABLE OF CONTENTS

TABLI	E OF CON	VTENTS	ii
List of	Tables		ii
List of	Figures		iii
List of	Append	ices	iii
1.0	INTROI	DUCTION	1
1.1	Purp	0Se	1
1.2	Site I	Description and History	1
2.0	GROUN	DWATER SAMPLING ACTIVITIES	2
2.1	Moni	toring Network	2
2.2	Grou	ndwater Gauging	3
2.3	Free-	Phase Petroleum Hydrocarbon (FPPH) Measurements	3
2.4	Grou	ndwater Purging	3
2.5	Grou	ndwater Sampling and Analysis	3
2.6	Quali	ty Assurance/Quality Control	4
2	.6.1	Trip Blanks	4
2	.6.2	Duplicates	4
2		Equipment Blanks	
2	.6.4	Laboratory QA/QC Program	4
3.0	RESULT	rs & discussion	5
3.1	Grou	ndwater Surface Elevations and Gradient	5
3.2	Free-	Phase Petroleum Hydrocarbons	6
3.3	Grou	ndwater Analysis	6
3	.3.1	ГРНg	6
3	.3.2	VOCs and Oxygenates	7
3	.3.3 I	Biodegradation Parameters	8
3	.3.4	QA/QC	10
4.0	SUMMA	ARY & CONCLUSIONS	11
4.1	Grou	ndwater Surface Elevations and Gradient	11
4.2	Free-	Phase Petroleum Hydrocarbons	11
4.3	Grou	ndwater Quality	12
4	.3.1	Off-Site Sources of Petroleum Hydrocarbons	12
4	.3.2 I	Discussion of Solvent Detections	12

4.	.3.3 Assessment of Vapor Risk from Groundwater Plume	. 13
4.4	Biodegradation	. 13
5.0	REFERENCES	. 15
6.0	CLOSING	. 16

List of Tables

Table I Well Construction Details

Table II Summary of Groundwater Level Measurements

Table III Summary of TPH and VOC Results

Table IV Summary of Biodegradation Parameters

List of Figures

Figure 1	Site Location Map
Figure 2	Site Plan Showing Monitoring Well Locations
Figure 3	Site Plan Showing Groundwater Surface Elevations Q3 2012
Figure 4	Site Plan Showing TPHg Isoconcentration Contours Q3 2012
Figure 5	Site Plan Showing Benzene Isoconcentration Contours Q3 2012
Figure 6	Site Plan Showing MTBE Isoconcentration Contours Q3 2012
Figure 7	Site Plan Showing ORP Isoconcentration Contours Q3 2012

List of Appendices

Appendix A Groundwater Monitoring Field Forms

Appendix B Analytical Laboratory Reports

Appendix C Hydrographs

1.0 INTRODUCTION

On behalf of Isola Law Group, LLP, Murex Environmental (Murex) has prepared this *Third Quarter 2012 Groundwater Monitoring Report* for the former Powerine Refinery property located at 12345 Lakeland Road in Santa Fe Springs, California (Site; **Figure 1**).

1.1 Purpose

The objective of the quarterly groundwater monitoring is to evaluate groundwater quality beneath the site and adjacent properties (**Figure 2**) and to provide regular updates to the Regional Water Quality Control Board, Los Angeles Region (RWQCB). This report presents the groundwater monitoring activities performed between August 17, 2012 and September 7, 2012, in accordance with the RWQCB Cleanup and Abatement Order (CAO) No. 97-118.

1.2 Site Description and History

The Site is approximately 55 acres in size and is bordered to the north by Florence Avenue, to the south by Lakeland Road, and to the east by Bloomfield Avenue (Figure 2). Commercial/light industrial properties border the site to the west. The site was operated as an oil refinery from the 1930s until July 1995. Historical aerial photographs indicate that the western portion of the site may have been used for agricultural purposes from approximately 1928 to 1938. Oil production-related structures such as ponds and aboveground holding tanks may have also been located onsite during this time period (Haley & Aldrich, Inc. [Haley & Aldrich], 2005). The refinery is not currently in operation; however, some of the refinery structures remain onsite. These structures are scheduled to be removed prior to the redevelopment of the property for commercial/light industrial use.

Previous refining operations included processing crude oil into several grades of fuel including kerosene, leaded gasoline and aviation fuel, unleaded gasoline, jet fuel, high and low-sulfur diesel, fuel oil, and petroleum coke. Soil and groundwater quality beneath and in proximity to the site have been impacted by past site operations. Soil and groundwater investigations are being conducted pursuant to a CAOs (No. 97-118) issued by the RWQCB to Powerine Oil Company (CENCO Refining Company) in 1997 (Haley & Aldrich, 2005).

2.0 GROUNDWATER SAMPLING ACTIVITIES

Quarterly groundwater monitoring has been conducted since August 1986. The previous monitoring event was performed by Murex in May 2012. The following subsections summarize work completed during the third quarter 2012 monitoring event.

2.1 Monitoring Network

The quarterly groundwater monitoring program currently includes the existing 59 wells, as listed in **Table I** and shown on **Figure 2**. These wells include:

- Twenty-two onsite groundwater monitoring wells: MW-101, MW-103, MW-104A, MW-105, MW-201, MW-202, MW-204, MW-205, MW-504, MW-701, MW-702, MW-703, MW-704, MW-705, MW-706, W-9, W-10, W-11, W-12, W-17A, W-17B, and W-17C;
- Twenty-five downgradient offsite groundwater monitoring wells of which:
 - Four are located on the former Lakeland (aka "Coaster") property: MW-501A, MW-502, MW-503B, and MW-707; and
 - Twenty-one are located on the Metropolitan State Hospital (MSH) property:
 MW-600A, MW-601A, MW-603, MW-604, MW-605, MW-606, MW-607,
 MW-708, MW-709, MW-710, MW-711, MW-712, MW-713, MW-714, MW-715, W-14A, W-14B, W-14C, W-15A, W-15B, and W-15C;
- Seven offsite groundwater monitoring wells located to the southeast on the Walker property including: EW-1, W-1, W-3A, W-4, W-16A, W-16B, and W-16C;
- Three offsite groundwater monitoring wells located to the east on the Bloomfield property that include: MW-106A, MW-107A, and MW-203; and
- Two onsite, deep, former water production wells identified as W-7 and W-8.

2.2 Groundwater Gauging

Murex inspected and measured the depth to groundwater in all 59 of the wells on August 17, 2012. During gauging, wells are also checked for the presence and thickness of free-phase petroleum hydrocarbons (FPPH) product. Of those, 19 wells were dry, and 4 contained free-phase petroleum hydrocarbon (FPPH).

Table II summarizes the groundwater elevation and free product thickness measurements.

2.3 Free-Phase Petroleum Hydrocarbon (FPPH) Measurements

Wells that initially exhibit the presence of FPPH are purged until they become dry or until approximately 6 to 10 well volumes are evacuated. Thereafter, the wells are inspected for the return of FPPH and if present, its thickness is measured over longer and longer time intervals (in general 1 hour, 2 hours, 4 hours, 24 hours, 3 days, 7 days, and 10 days).

For wells in which FPPH does not return within the first day, groundwater is sampled for analysis.

Further discussion of the wells exhibiting free product is presented in Section 3.2.

2.4 Groundwater Purging

The groundwater monitoring wells that contained groundwater, with the exception of production wells W-7 and W-8, were purged via a dedicated vacuum stinger that was connected to a truck-mounted vacuum pump truck operated by Nieto & Sons. W-7 and W-8 are deep production wells and are sampled without purging water from them first. During purging, extracted groundwater volume and quality were recorded. The parameters measured during purging were temperature, pH, electrical conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), color, and odor. The results of the field parameter testing are summarized in **Table IV**. Purged groundwater was disposed of by Nieto & Sons at the wastewater treatment system in operation at the Site.

2.5 Groundwater Sampling and Analysis

Following purging, groundwater samples were collected by disposable bailer from the wells and placed in sample containers and stored in pre-cooled ice chests and transported under proper chain-of-custody (COC) procedures to Sunstar Laboratories, Inc. (Sunstar Labs) of Lake Forest, California, California Department of Public Health Environmental Laboratory Accreditation Program (ELAP) #2250. All collected samples were analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by U.S. Environmental Protection Agency (USEPA) Method 8015M, and
- Volatile organic compounds (VOCs) with oxygenates by USEPA Method 8260B.

Results of these analyses are summarized in **Table III** (Summary of VOCs, Oxygenates, TPH and Emergent Chemicals). Results of the field-measured parameters are shown in **Table IV**.

2.6 Quality Assurance/Quality Control

In accordance with the Quality Assurance/Quality Control (QA/QC) plan, Murex collected and submitted field duplicate samples and trip blanks for laboratory analysis as a quality assurance/quality control measure.

2.6.1 Trip Blanks

Trip blanks (provided by SunStar Lab) accompanied each daily groundwater sample shipment to evaluate the potential contamination of field samples during storage and transport. Trip blanks were analyzed for VOCs only.

2.6.2 Duplicates

Duplicate samples, which assess the precision of the laboratory analyses, were collected from wells MW-701, MW-702, and MW-703. This represents a duplicate frequency equal to approximately 13% relative to the total number of wells sampled. The duplicates followed the same analytical protocols as their respective primary samples. The results of the duplicate analyses are shown in the results tables beside the original sample result.

2.6.3 Equipment Blanks

Equipment blanks were not collected because dedicated stingers were used to purge the wells and new disposable bailers were used for sampling, therefore eliminating cross-contamination between wells during the purging and sampling process.

2.6.4 Laboratory QA/QC Program

Laboratory QA/QC reports were reviewed to confirm proper completion of data validation tests, including batch QC results, method blanks, laboratory control samples, matrix spikes, and duplicates. The results of lab QC tests were within acceptable limits.

3.0 RESULTS & DISCUSSION

This section presents the results of the third quarter 2012 groundwater monitoring event. As mentioned earlier in the report, well completion details are provided in **Table I**. Groundwater level measurements and groundwater elevations are summarized in **Table II**. Comprehensive analytical results, including historical and recent results, are compiled in **Tables III**. **Table IV** contains a summary of bio-attenuation and field-measured parameter readings.

Figure 3 shows the groundwater elevation measured at each monitoring well, as well as the overall gradient and direction of groundwater flow. **Figure 4** depicts the concentrations and estimated contour lines of TPHg measured in each well, and **Figure 5** shows similar concentrations and contour lines for benzene and MTBE.

Well measurement and groundwater sampling forms are attached as **Appendix A**. Laboratory reports and completed COCs are included in **Appendix B**.

The presentation of the chemical testing results in this report does not distinguish between site- and non-site-related constituents although there are indications of non-site-related contamination in groundwater, which is discussed further in Section 4.3.

3.1 Groundwater Surface Elevations and Gradient

Groundwater surface elevations were calculated for each well by subtracting the water level measurement from the top of casing elevation (**Tables I and II**). Groundwater elevations were adjusted for wells containing FPPH, assumed to have a relative density of 0.80, which is typical for mean density of various petroleum hydrocarbon mixtures. Groundwater elevations, contour lines, flow direction and gradient are shown on **Figure 3**.

Based on groundwater level measurements obtained on August 17, 2012, first-encountered groundwater beneath the site vicinity ranges in elevation from 16.72 to 51.13 feet above mean sea level (ft-amsl). Wells W-7 and W-8 are production wells, with multiple screens situated deeper than 500 feet bgs. Their elevations were higher, between 52.59 and 67.00.

In general, groundwater elevations were similar to those measured in the second quarter 2012 monitoring event. Groundwater elevations had exhibited steady decreases for several years until the third quarter 2010, when they experienced a significant increase. The increase continued in the fourth quarter 2011 and has apparently leveled off. As a

whole, the average change in groundwater elevation over all the wells measured was a decrease of approximately 1.03 feet from the second quarter 2012 sampling event. Appendix C includes hydrographs depicting the change in groundwater elevation over time in the A, B and C screened horizons, respectively.

The average horizontal groundwater gradient is approximately 0.008 foot per foot (ft/ft), as shown in **Figure 3**, which was similar to the previous monitoring period, and represents what is considered a moderately steep gradient. The groundwater flow direction originates from the northeast and turns south across the area of study. This flow direction is relatively consistent with those historically reported in previous investigations.

3.2 Free-Phase Petroleum Hydrocarbons

Measurable FPPH, also known as light non-aqueous-phase liquid or LNAPL, was detected in monitoring wells EW-1, W-15A, W-11, and MW-708 (**Table II**). Well W-15A exhibited measureable FPPH for the fifth time during this event. FPPH was measured at a thickness of 1.12 feet in W-15A, 1.03 feet in EW-1, 0.11 feet in MW-708 and 0.09 feet in W-11. During previous monitoring events going back many years, FPPH was also historically detected in wells MW-101, MW-103, MW-104, MW-201, MW-202, MW-203, MW-204, MW-205, MW-206, MW-501, MW-502, MW-503, MW-503B, MW-504, MW-600, MW-600A, MW-601A, W-3A. The majority of these wells are now dry.

3.3 Groundwater Analysis

Groundwater analytical results are summarized in **Tables III**, and laboratory reports and completed COCs are included in **Appendix B**.

3.3.1 TPHg

Third quarter 2012 TPHg results are presented in **Table III** and **Figure 4**. TPHg was detected in 34 out of the 39 wells sampled at concentrations ranging from 0.061 milligrams per liter (mg/L) in monitoring well W-16B to 2,8 mg/L in monitoring well MW-711.

Well W-15A exhibited the largest decrease among all the wells from 2,100 mg/L to 23 mg/L.

The most significant increase was observed in monitoring well W-10, where TPHg concentrations rose from 1 mg/L in the second quarter 2012 to 8.2 mg/L in the third quarter 2012. Well W-14A has been non-detect ($<50~\mu g/L$) historically, but exhibited an elevated TPH-g concentration of 1.6 mg/L in the third quarter 2012. One other significant increase in TPHg concentration was observed in well W-11, which rose to 7.4 mg/L in the

third quarter, from 1.8 mg/L in the second quarter 2012. The most significant decreases in TPH-g were observed in wells MW-503B, MW-708, and MW-715.

3.3.2 VOCs and Oxygenates

A summary of VOC and oxygenate analytical data for the third quarter 2012 is presented in **Table III**, along with historical data from previous monitoring events.

3.3.2.1 Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

Benzene was detected in 26 samples from the 39 total wells sampled. Concentrations ranged from 0.75 μ g/L in well MW-701to 3,100 μ g/L in well W-10 (**Figure 5**) (23 of these wells contained benzene at concentrations exceeding the 1 μ g/L California Maximum Contaminant Level (MCL) in drinking water). Benzene concentrations in the third quarter of 2012 were similar to concentrations observed during previous monitoring events.

Of the other BTEX compounds analyzed for, toluene was detected in samples from 15 wells at concentrations ranging from 0.56 μ g/L in MW-715 to 2,000 μ g/L in MW-711. Toluene was detected above its California MCL (150 μ g/L) in 2 wells this quarter.

Ethylbenzene was detected in the samples collected from 16 wells at concentrations ranging from 0.52 μ g/L in MW-703 to 710 μ g/L in MW-708. Ethylbenzene was detected at or above its California MCL (300 μ g/L) in 4 wells this quarter.

Total xylenes, including the *ortho, meta*, and *para* isomers, were detected in samples from 16 wells at concentrations ranging from 0.52 μ g/L in MW-15B to 3,300 μ g/L in W-15A. Xylene was detected above the California MCL (1,750 μ g/L) in 2 wells this quarter.

3.3.2.2 Methyl tert-Butyl Ether (MTBE)

The oxygenate MTBE was detected in samples from 17 wells at concentrations ranging from 1.2 μ g/L in MW-715 to 410 μ g/L in MW-713 (**Figure 6**). The 13 μ g/L drinking water MCL established for MTBE in California was exceeded in 6 wells.

3.3.2.3 tert-Butyl Alcohol (TBA)

TBA, another oxygenate and a byproduct of MTBE breakdown, was detected in 11 of the 39 sampled wells at concentrations ranging from 10 μ g/L in well W-15C to 97 μ g/L in well MW-712 The California Notification Level (formerly Action Level) and Response Level for Drinking Water for TBA is 12 μ g/L. A total of 8 out of the 11 TBA detections exceeded this limit for this quarter.

3.3.2.4 Other VOCs

In addition to the aforementioned constituents of concern, several VOCs were detected in groundwater during this monitoring event. Some of these compounds, such as naphthalene, n-propylbenzene and trimethylbenzene, for instance, are related to petroleum hydrocarbon releases.

Conversely, also detected were chlorinated solvents, such as tetrachloroethylene (PCE), trichloroethene (TCE), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), 1,2-dichloroethane (1,2-DCA), and cis- and trans-1,2-dichloroethene (cis-1,2-DCE and trans-1,2-DCE), among others, which we believe are the result of off-site contamination entering the Powerine well network. Chlorinated solvents were detected in the following wells this quarter: MW-107A, MW-701, MW-702, MW-703, MW-704, MW-705, MW-706, MW-707, MW-710, MW-711, W-10, W-11, W-14B, W-14C, W-15C, W-16B, W-16C, and W-17A.

The most significant detections of chlorinated compounds are described as follows: to the southwest, in wells MW-710 and W-14B, PCE and TCE were detected between 8.9 and 150 μ g/L.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Site. Murex provides this data to the U.S. EPA on a periodic basis.

3.3.3 Biodegradation Parameters

Biodegradation of TPHg most commonly occurs by aerobic, nitrate-reducing, ferric iron (Fe³⁺)-reducing, sulfate-reducing, or methanogenic respiration. TPHg and BTEX serve as electron donors for microbial metabolism in aerobic biodegradation. Electron acceptors include oxygen, nitrate, Fe³⁺, sulfate, and carbon dioxide.

In general, if sufficient oxygen is present, aerobic biodegradation will occur first. When DO concentrations fall below approximately 0.5 mg/L (an anoxic environment), denitrification will begin if nitrate is present. After most nitrate has been consumed, Fe³⁺ reduction will begin if Fe³⁺ is present. Fe³⁺ concentrations will decrease, while Fe²⁺ concentrations will increase. After most Fe³⁺ is consumed, sulfate reduction will begin if sulfate is available. After most sulfate has been consumed, methanogenesis, which involves carbon dioxide as an electron acceptor, begins. During methanogenesis, methane concentrations increase (Department of the Navy, 1998).

The results discussed below indicate that biodegradation, whether aerobic or anaerobic, may be occurring in the local environment around the wells that were sampled for biodegradation parameters.

3.3.3.1 Field Measured Parameters

Field pH, DO, and oxidation-reduction potential (ORP) data were collected from 34 monitoring wells using an YSI 556 water quality meter (**Table IV**). The meter was inserted into grab water samples, collected from the vacuum truck intake during well purging.

- **pH** This parameter quantifies the acidity or alkalinity of a solution. Results ranged from 7.50 to 8.62 with a few exceptions, indicating a neutral to slightly alkaline environment that is suitable for the growth of alkalophilic bacteria and microorganisms that thrive at a circumneutral pH.
- **DO** Oxygen is the preferred electron acceptor in the biodegradation of petroleum hydrocarbons. When aerobic biodegradation occurs, DO concentrations are expected to decline as microorganisms use the electron acceptor during respiration. The vacuum stinger method used to purge the wells introduces oxygen into the groundwater. Therefore, DO data is not representative of the actual oxygen content. It is likely very low in wells exhibiting higher TPH concentrations, since oxygen is the first compound used up in the biological degradation of petroleum.
- **ORP** This parameter is a measure of electron activity, which reflects the oxidizing or reducing nature of the environment. ORP values are generally negative under reducing conditions (gaining electrons) and positive under oxidizing conditions (losing electrons). Negative ORP values were observed in 24 of the 34 wells measured.

ORP values ranged from -226.7 mV in well MW-107A to 125.7 mV in Well W-15C. **Figure 7** illustrates iso-concentration contour lines for ORP.

Hydrogen sulfide (produced from the reduction of sulfate in groundwater, after oxygen is used up) was detected during purging of wells exhibiting elevated TPH concentrations and low or negative ORP values, which is consistent with our understanding of the conceptual site model, and indicate that aerobic degradation of the hydrocarbons has stalled due to dissolved oxygen limitations. It is likely that the introduction of air (via bioventing for example) will enhance the process of stimulating the aerobic degradation of the constituents of concern at the site.

3.3.4 QA/QC

Duplicate sample results are provided alongside their primary sample results in **Tables III**. The results show similar concentrations of the analytes of interest as in their respective primary samples, as would be expected for an ELAP-certified laboratory.

Trip blank samples did not indicate the presence of VOCs, which indicates proper sample storage and confirms a lack of cross-contamination during transport.

Laboratory method blanks did not indicate the presence of VOCs, which indicates that laboratory detection equipment did not exhibit cross-contamination.

Laboratory control and laboratory spike samples exhibited results within acceptable limits, indicating no matrix interference and that the detection equipment was working properly.

4.0 **SUMMARY & CONCLUSIONS**

Groundwater monitoring was performed at and in the vicinity of the former CENCO refinery in August 2012 as part of an ongoing groundwater monitoring plan intended to evaluate chemical impacts, contaminant sources, and overall groundwater quality. This groundwater monitoring event included inspecting/gauging water levels in 59 wells and collecting samples from 39 of those wells for analysis of TPHg and VOCs.

4.1 Groundwater Surface Elevations and Gradient

A horizontal groundwater gradient of approximately 0.008 ft/ft was calculated for the third quarter groundwater monitoring event. This is consistent with historical gradient data for the site vicinity. Averaging all the wells exhibiting measurable groundwater, elevations have decreased (although it rose in select individual wells) by approximately 1.03 feet since the previous quarter. Groundwater flows from the northeast and turns due south across the area of study, which is consistent with historical measurements. Deep-screened production wells W-7 and W-8 exhibited decreases of over 5 vertical feet in groundwater elevation this quarter; this is likely due to the cessation of municipal water pumping operations in near proximity of the site.

4.2 Free-Phase Petroleum Hydrocarbons

Measureable free product was identified in four wells EW-1, W-15A, W-11, and MW-708. These wells have exhibited FPPH in the past; although it first appeared in W-15A in 2011. The FPPH thickness measured in these wells (1.03, 1.12, 0.09, and 0.11 feet, respectively) does not necessarily reflect FPPH actual thickness in the surrounding aquifer as fluctuations in water levels and permeability factors can influence FPPH accumulation in monitoring wells.

Murex has conducted a study to compare the characteristics (i.e., "fingerprints") of FPPH samples taken from several of the monitoring wells, including wells that do not currently contain FPPH. Samples of FPPH were collected from wells W-11, MW-503B, MW-708, EW-1, and W-15A. All the samples were then submitted for fingerprinting analysis to Zymax Forensics Laboratory in Escondido, California on September 21, 2011. The findings of this study were submitted to the RWQCB on January 25, 2012 as an addendum to the June 30, 2011 FPPH Investigation Report.

4.3 Groundwater Quality

The highest concentrations of TPHg detected during this sampling event were beneath the Coaster property and the northern and southern portions of the MSH (see **Figure 4**). The maximum concentration of TPHg was 28 mg/L in well MW-711, 23 mg/L in well W-15A, 17 mg/L in well MW-708 and 10 mg/L in well MW-712. Wells MW-708, MW-711, and MW-712 are located south of the Coaster property.

Benzene, toluene, ethylbenzene, xylene, and other compounds associated with petroleum hydrocarbons largely mimic TPHg in their presence and relative concentrations in the areas associated with the plume. The maximum concentration of benzene was detected in well W-10, at 3,100 μ g/L, located on the former Powerine Refinery property (see **Figure 5**). The maximum concentration of MTBE was detected in well MW-713 at 410 μ g/L, located in the central portion of the MSH (**Figure 6**) at a distance of approximately 2,000 feet. It is likely that the impacts present in well W-15A are resultant from releases other than those sourced from the refinery property.

Changes in the petroleum hydrocarbon plume may be reflective of the recent increases in groundwater elevation which have exhibited their fifth increase after a long period of steep decline. Murex will continue to monitor the hydrocarbon plume within the well network and provided regular updates to the RWQCB through the monitoring and reporting program.

4.3.1 Off-Site Sources of Petroleum Hydrocarbons

In addition to historic releases from the Site, data collected from the monitoring well network (see **Figures 4, 5, and 6**) exhibits evidence of other sources. Some observations that would support the presence of alternative sources are: (1) the comparatively clean appearance of FPPH in well W-15A versus the weathered or cloudy appearance of FPPH in wells EW-1, MW-503B, and MW-708; (2) the historical presence of FPPH in wells EW-1 and W-3A, which are located east and cross-gradient of the former refinery.

In connection with the study of the FPPH samples submitted for fingerprinting analysis, Murex is also reviewing literature and maps to identify other possible sources of petroleum hydrocarbons in the vicinity of the Site as well as to distinguish Site-related contamination from contamination originating elsewhere.

4.3.2 Discussion of Solvent Detections

Data collected from the monitoring well network (see **Table III**) exhibits the presence of substances not linked to historic releases at the Site, including chlorinated solvents. The

following observations were made regarding the additional detected chemicals in groundwater within the Powerine monitoring well network.

During this sampling event, elevated PCE and TCE concentrations (i.e., between 8.9 and 150 μ g/L) were measured in wells W-14B and MW-710. This is consistent with previously measured high values from MW-710. Levels of PCE and TCE found in W-14B increased for the past several monitoring periods since January 2011. Historically, these compounds were also detected in wells MW-107A, MW-701, and MW-14C.

Cis-1,2-DCE and trans-1,2-DCE were found in 17 of the wells sampled at concentrations consistent with historical levels. Well W-16B exhibited decreased concentrations of both cis-1,2-DCE (6 μ g/L) and trans-1,2-DCE (3.5 μ g/L) in the third quarter.

1,1-DCE was detected at an elevated concentration of 60 μ g/L in well W-14B and 56 μ g/L in well MW-710. Historically, wells W-14B and W-14C also exhibited elevated concentrations of these chemicals.

The U.S. EPA and the RWQCB are aware of the chlorinated solvents in groundwater through their oversight of the cleanup of a Superfund site located to the north, and upgradient of the Site. Murex provides this data to the U.S. EPA on a periodic basis.

4.3.3 Assessment of Vapor Risk from Groundwater Plume

At the direction of the DTSC, Murex has conducted an off-site soil gas sampling study. The results, presented to the RWQCB and DTSC in the November 7, 2011 *Off-Site Soil Gas Survey Report*, indicate that the petroleum hydrocarbon plume does not pose a threat to off-site receptors as a result of volatilization from groundwater.

4.4 Biodegradation

Intrinsic biodegradation continues to be viable, in at least some areas of the site and vicinity, based on nitrate, sulfate, Fe²⁺, methane, alkalinity, and ORP results from previous sampling events conducted at the site. Oxygen has been depleted, as evident by the presence of hydrogen sulfide in the deep subsurface (sulfate reduction reactions result in the formation of hydrogen sulfide). Since the main limiting factor for biodegradation of petroleum hydrocarbons is oxygen, the mechanical introduction of oxygen could stimulate aerobic biodegradation of the VOCs present in groundwater.

Murex conducted pilot testing at the site to determine the appropriate remedial technology which will effectively enhance biodegradation of the constituents of concern

and reduce the extent of groundwater contamination. Based on the results and data collected during pilot testing, it appears that a combination of remedial technologies would be suited for the site. The results and conclusions of this study were submitted to the RWQCB in the Pilot Testing Report dated November 21, 2011.

5.0 REFERENCES

- 1. Arcadis. 2009. Second Quarter Groundwater Monitoring Report, Former CENCO Refinery, 12345 Lakeland Road, Santa Fe Springs, California. Prepared for Isola Law Group, LLP. June 25.
- Dan Herlihy Environmental Services. 2006. Letter from Dan Herlihy, Principal, to Mr. David Isola, Esq., Isola & Ruiz, LLC, re: Recommendations to Fill Data Gap and Modify Shallow Well Design & Sampling, Community Development Commission of the City of Santa Fe Springs v. Powerine Oil Company et al., Case No. VC039820. September 8.
- 3. Department of the Navy. 1998. *Technical Guidelines for Evaluating Monitored Natural Attenuation of Petroleum Hydrocarbons and Chlorinated Solvents in Ground Water at Naval and Marine Corps Facilities*. September.
- 4. Gustafson, J.B., Tell, J.G., Orem, D., 1996. Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG): Selection of Representative TPH Fractions Based on Fate and Transport Considerations. Volume 3.
- 5. Haley & Aldrich, Inc. 2004. *Draft 2004 Semi-Annual Groundwater Monitoring Report, CENCO Refinery, Santa Fe Springs, California*. October 18.
- 6. Haley & Aldrich, Inc. 2005. *Additional Site Investigation Work Plan, CENCO Refining Company*. May 9.

6.0 CLOSING

I certify under penalty of law that this document and all enclosures were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. The information contained herein is, to the best of my knowledge and belief, true, accurate and complete, however, is reliant upon public agency records, which could be incomplete or inaccurate beyond our control.

Should you have any questions or concerns regarding the material herein, please do not hesitate to contact the undersigned at (714) 508-0800.

Sincerely,

MUREX ENVIRONMENTAL

Jeremy R Squire, P.E. Senior Engineer

Table I
Well Construction Details
Former CENCO Refinery
Santa Fe Springs, CA

	Wel	II Installatio	n									Completion	n Data									
			Elev	ation /			S	creen			Dept	h (ft)					Eleva	tion (ft)				
Well ID	Date	Ву	Ground Surface	Top of Casing	Hole Diameter (in)	Casing Diameter (in)	Slot	Length	Sar	nd Pack	Slo	otted	Total	Depth	San	d Pack	SI	otted	Total	Depth	Location	Reference(s) ¹
			(ft)	(ft amsl)			(in)	(ft)	Тор	Bottom	Тор	Bottom	Casing	Hole	Тор	Bottom	Тор	Bottom	Casing	Hole		
Groundwater	Monitoring Wells																					
EW-1	6/11/1905	Emcon	146.85	146.85	-	4	-	-	-	-	-	-	113.5	1	-	-	-	-	-	-	Walker	Versar (2000)
MW-101	8/28/1985	IT	145.19	138.00	12	4	-	20	69.5	90	70	90	90	95	66	45	65	45	45	40	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-103	8/30/1985	IT	137.18	139.36	12	4	-	20	-	-	79	99	99	99.5	-	-	58	38	-	37	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104	8/24/1985	IT	-	-	12	4	-	20	-	-	76.5	96.5	97	99	-	-	66	46	-	43	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-104A	6/1999	Versar	142.38	144.13	-	4	-	-	-	-	65	100	100	1	-	-	-	-	-	-	Refinery	Versar (2000); measured well depth
MW-105	12/1995	TriHydro		141.16	-	4	-	-	-	-	68	98	98	100	-	-	-	-	-	39	Refinery	Versar (2000); measured well depth
MW-106	12/1995	TriHydro	-	-	-	4	-	-	-	-	74	104	106.45	106	-	-	-	-	42	42	Bloomfield	Versar (2000)
MW-106A	2/20/2006	N&M	152.92	152.81	8	4	0.02	27	82	110	83	110	110	110	70	42	69	42	42	42	Bloomfield	Well completion report
MW-107	12/1995	TriHydro	-	-	-	4	-	-	-	-	75	105	107.55	108	-	-	-	-	41	41	Bloomfield	Versar (2000)
MW-107A	2/20/2006	N&M	147.37	147.02	8	4	0.02	27	82	110	83	110	110	110	64	36	63	36	36	36	Bloomfield	Well completion report
MW-201	9/10/1985	IT	134.86	135.65	12	4	-	30	66	103	72	102	102	103	67	30	61	31	31	30	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-202	9/23/1985	IT	139.00*	140.62	16	4	-	30	58	105	63	93	93	105	70	23	65	35	35	23	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-203	9/13/1985	IT	144.08	143.71	12	4	-	30	64.7	107	77	107	107	119	78	36	66	36	36	24	Bloomfield	IT (1986); Versar (2000); ARCADIS (2003)
MW-204	9/19/1985	IT	141.15	142.90	12	4	-	30	67.5	105	73.3	103.3	103.3	105	73	35	67	37	37	35	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-205	9/14/1985	IT	140.00*	140.09	12	4	-	30	65.5	103	69.5	99.5	99.5	104.5	73	35	69	39	39	34	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-206 ²	9/18/1985	IT	-	-	-	4	-	30	62.5	104	71	101	101	104	67	26	59	29	29	26	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501	6/9/1986	IT	-	-	-	4	-	30	-	-	71	101	101	107	-	-	58	28	-	22	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-501A	3/1999	ATC	131.26	130.89	-	4	-	-	-	-	75	95	95	95	-	-	-	-	-	35	Lakeland	Versar (2000); measured well depth
MW-502	6/11/1986	IT	131.88	131.00	-	4	-	30	-	-	74	104	104	104	-	-	54	24	-	24	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-503	6/13/1986	IT	-	-	-	4	-	30	-	-	80.5	110.5	110.5	111	-	-	51	21	-	20	Lakeland	IT (1986); Versar (2000); ARCADIS (2003)
MW-503B	1/1999	Versar	133.03	132.66	-	4	-	-	-	-	69	109	109	109	-	-	-	-	-	21	Lakeland	Versar (2000); measured well depth
MW-504	6/18/1986	IT	-	137.18	-	4	-	50	-	-	58	118	95.76	118	-	-	77	17	-	17	Refinery	IT (1986); Versar (2000); ARCADIS (2003)
MW-600	8/15/1990	ENSR	-	-	-	4	-	30	-	-	78	108	108	110	-	-	42	12	-	10	MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-600A	6/1999	Versar	123.28	124.26	-	4	-	-	-	-	-	-	92.7	100	-	-	-	-	-	20	MSH	Versar (2000); measured well depth
MW-601	8/17/1990	ENSR	-	-	-	4	-	30	-	-	85	115	115	117	-	-	40	10	-	8	MSH	IT (1986); Versar (2000); ARCADIS (2003)
MW-601A	6/1999	Versar			-	4	-	-	-	-	65	100	100	100	-	-	-	-	-	27	MSH	Versar (2000); measured well depth
MW-603	12/1995	TriHydro	121.40	120.95	-	4	-	-	-	-	70	100	100	100	-	-	-	-	-	19	MSH	Versar (2000); measured well depth
MW-604	12/1995	TriHydro	140.52	140.07	-	4	-	-	-	-	73	103	103	103	-	-	-	-	-	35	MSH	Versar (2000); measured well depth
MW-605	12/1995	TriHydro	117.40	116.82	-	4	-	-	-	-	65	95	95	95	-	-	-	-	-	20	MSH	Versar (2000); measured well depth
MW-606	12/1995	TriHydro	116.90	116.06	-	4	-	-	-	-	70	100	100	100	-	-	-	-	-	14	MSH	Versar (2000); measured well depth
MW-607	12/1995	TriHydro	128.92	128.28	-	4	-	-	-	-	77	107	107	107	-	-	-	-	-	19	MSH	Versar (2000); measured well depth
W-1	12/1995	TRC	145.19	144.81	-	4	-	-	-	-	70	129	129	130	-	-	-	-	-	13	Walker	IT (1986); Versar (2000)
W-2 ²	12/1995	TRC	-	-	-	4	-	-	-	-	84	129	129	129	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-3 ²	12/1995	TRC	-	-	-	4	-	-	-	-	82	122	122	124	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-3A	-	-	137.18	136.79	-	4	-	-	-	-	-	-	111.52	115	-	-	-	-	-	21	Walker	Versar (2000)
W-4	12/1995	TRC	143.18	142.56	-	4	-	-	-	-	79	129	130	-	-	-	-	-	-	-	Walker	IT (1986); Versar (2000)
W-9	8/22/2006	TA	140.37	139.84	8	2	0.01	35	73	111	75	110	110	120.5	66	28	64	29	29	19	Refinery	ARCADIS BBL (2006)
W-10	8/21/2006	TA	141.39	140.71	8	2	0.01	35	73	111	75	110	110	130	67	29	65	30	30	10	Refinery	ARCADIS BBL (2006)
W-11	8/25/2006	TA	141.96	142.10	8	2	0.01	35	73	111	75	110	110	119	68	30	66	31	31	22	Refinery	ARCADIS BBL (2006)
W-12	8/23/2006	TA	142.93	145.15	8	2	0.01	35	75	114	75	114	114	120.5	69	30	69	30	30	24	Refinery	ARCADIS BBL (2006)

Table I Well Construction Details Former CENCO Refinery Santa Fe Springs, CA

	Wel	l Installatio	n									Completion) Data									
			Elev	vation			S	creen			Dept	h (ft)					Eleva	tion (ft)				
Well ID	Date	Ву	Ground Surface	Top of Casing	Hole Diameter (in)	Casing Diameter (in)	Slot	Length	San	nd Pack		otted	Total	Depth	San	d Pack	SI	otted	Total	Depth	Location	Reference(s) ¹
			(ft)	(ft amsl)			(in)	(ft)	Тор	Bottom	Тор	Bottom	Casing	Hole	Тор	Bottom	Тор	Bottom	Casing	Hole		
W-14A	4 /22 /2000		115.23	114.71	9	2	0.02	45	67	112	67	112	112	200	48	3	48	3	3	-85		
W-14B	1/22/2008- 1/30/2008	Arcadis	115.00*	114.78	9	2	0.02	10	157	167	157	167	167	200	-42	-52	-42	-52	-52	-85	MSH	ARCADIS (2008)
W-14C	, ,		115.00*	114.78	9	2	0.02	10	185	195	185	195	195	200	-70	-80	-70	-80	-80	-85		
W-15A	11/27/2007		127.91	127.59	10	2	0.02	45	78	126	80	125	125	200	50	2	48	3	3	-72		
W-15B	11/27/2007- 12/10/2007	Arcadis	128.00*	127.61	10	2	0.02	10	143	156	145	155	155	200	-15	-28	-17	-27	-27	-72	MSH	ARCADIS (2008)
W-15C			128.00*	127.59	10	2	0.02	10	188	200	190	200	200	200	-60	-72	-62	-72	-72	-72		
W-16A	10/24/2007-		147.89	147.60	10	2	0.02	45	76	125	78	123	123	200	72	23	70	25	25	-52		
W-16B	10/30/2007	Arcadis	148.00*	147.68	10	2	0.02	10	143	156	152	162	162	200	5	-8	-4	-14	-14	-52	Walker	ARCADIS (2008)
W-16C			148.00*	147.67	10	2	0.02	10	184	200	186	196	196	200	-36	-52	-38	-48	-48	-52		
W-17A	1/31/2008-		141.60	141.38	9	2	0.02	45	63	108	63	108	108	200	78	33	78	33	33	-59		
W-17B	2/8/2008	Arcadis	142.00*	141.37	9	2	0.02	10	159	169	159	169	169	200	-18	-28	-18	-28	-28	-59	Refinery	ARCADIS (2008)
W-17C			142.00*	141.38	9	2	0.02	10	190	200	190	200	200	200	-49	-59	-49	-59	-59	-59		
MW-701	12/6/2010	Murex	136.87	139.48	12	4	0.02	50	77	130	80	130	130	130	59.87	6.87	56.87	6.87	6.87	6.87	Refinery	Murex (2011)
MW-702	12/15/2010	Murex	140.90	140.12	12	4	0.02	50	77	130	80	130	130	130	63.90	10.90	60.90	10.90	10.90	10.90	Refinery	Murex (2011)
MW-703	12/10/2010	Murex	134.73	137.23	12	4	0.02	50	77	130	80	130	130	130	57.73	4.73	54.73	4.73	4.73	4.73	Refinery	Murex (2011)
MW-704	12/14/2010	Murex	137.93	137.66	12	4	0.02	50	77	130	80	130	130	130	60.93	7.93	57.93	7.93	7.93	7.93	Refinery	Murex (2011)
MW-705	12/13/2010	Murex	139.16	141.94	12	4	0.02	50	77	130	80	130	130	130	62.16	9.16	59.16	9.16	9.16	9.16	Refinery	Murex (2011)
MW-706	12/9/2010	Murex	139.68	139.30	12	4	0.02	50	77	130	80	130	130	130	62.68	9.68	59.68	9.68	9.68	9.68	Refinery	Murex (2011)
MW-707	12/23/2010	Murex	128.86	128.43	12	4	0.02	50	77	130	80	130	130	130	51.86	-1.14	48.86	-1.14	-1.14	-1.14	Getty Drive	Murex (2011)
MW-708	1/12/2011	Murex	126.73	126.26	12	4	0.02	50	77	130	80	130	130	130	49.73	-3.27	46.73	-3.27	-3.27	-3.27	MSH	Murex (2011)
MW-709	1/26/2011	Murex	140.48	139.78	12	4	0.02	50	77	130	80	130	130	130	63.48	10.48	60.48	10.48	10.48	10.48	MSH	Murex (2011)
MW-710	1/13/2011	Murex	122.15	121.99	12	4	0.02	50	77	130	80	130	130	130	45.15	-7.85	42.15	-7.85	-7.85	-7.85	MSH	Murex (2011)
MW-711	1/17/2011	Murex	128.09	127.84	12	4	0.02	50	77	130	80	130	130	130	51.09	-1.91	48.09	-1.91	-1.91	-1.91	MSH	Murex (2011)
MW-712	1/24/2011	Murex	123.57	123.31	12	4	0.02	50	77	130	80	130	130	130	46.57	-6.43	43.57	-6.43	-6.43	-6.43	MSH	Murex (2011)
MW-713	1/19/2011	Murex	128.42	128.15	12	4	0.02	50	77	130	80	130	130	130	51.42	-1.58	48.42	-1.58	-1.58	-1.58	MSH	Murex (2011)
MW-714	1/20/2011	Murex	129.07	128.87	12	4	0.02	50	77	130	80	130	143	130	52.07	-0.93	49.07	-0.93	-13.93	-0.93	MSH	Murex (2011)
MW-715	1/27/2011	Murex	116.66	116.22	12	4	0.02	50	77	130	80	130	130	130	39.66	-13.34	36.66	-13.34	-13.34	-13.34	MSH	Murex (2011)
Groundwater	Production Wells		1			•		•				T	-			T	•	1				
					-	-	-	80	-	-	450	530	690	-	-	-	-	-	-	-	Refinery	
W-7	-		-	141.97	-	-	-	90	-	-	600	690	-	-	-	-	-	-	-	-	Refinery	IT (1986)
W-8	-		-	141.11	-	-	-	-	-	-	-	-	994	-	-	-	-	-	-	-	Refinery	

NOTES:

¹Sources: IT, 1986; Versar, 2000; Arcadis, 2003, 2006, 2008, and 2009; Dan Herlihy Environmental Services, 2006 (as shown).

ft Feet

in Inches

MSH Metropolitan State Hospital Property

amsl Above mean sea level

TOC Top of casing

Value retrieved from Google Earth

²Well abandoned

Table II Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA 3Q2012

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
		(ft)	(ft)	(ft)	(ft)	(ft amsl)	(ft amsl)
EW-1	8/17/2012	113.00	106.56	105.53	1.03	146.85	40.29
W-1	8/17/2012	129.61	108.73			144.81	36.08
W-3A	8/17/2012	111.73	DRY			136.79	NA
W-4	8/17/2012	129.71	109.65			142.56	32.91
W-7	8/17/2012	NM	89.38			141.97	52.59
W-8	8/17/2012	NM	74.11			141.11	67.00
W-9	8/17/2012	110.37	90.86			139.84	48.98
W-10	8/17/2012	110.21	96.00			140.71	44.71
W-11	8/17/2012	112.61	96.74	96.65	0.09	142.10	45.36
W-12	8/17/2012	116.10	101.91			145.15	43.24
W-14 A	8/17/2012	112.00	93.03			114.71	21.68
W-14 B	8/17/2012	167.00	92.45			114.78	22.33
W-14 C	8/17/2012	195.00	92.62			114.78	22.16
W-15 A	8/17/2012	125.70	110.87	109.75	1.12	127.59	16.72
W-15 B	8/17/2012	155.60	109.99			127.61	17.62
W-15 C	8/17/2012	197.34	110.58			127.59	17.01
W-16 A	8/17/2012	123.12	112.11			147.60	35.49
W-16 B	8/17/2012	160.25	116.76			147.68	30.92
W-16 C	8/17/2012	196.30	116.52			147.67	31.15
W-17 A	8/17/2012	108.30	95.49			141.38	45.89
W-17 B	8/17/2012	169.60	105.78			141.37	35.59
W-17 C	8/17/2012	200.00	105.87			141.38	35.51
MW-101	8/17/2012	90.72	DRY			138.00	NA
MW-103	8/17/2012	94.70	DRY			139.36	NA
MW-104A	8/17/2012	100.08	93.00			144.13	51.13
MW-105	8/17/2012	100.47	DRY			141.16	NA
MW-106A	8/17/2012	110.00	104.20			152.81	48.61
MW-107A	8/17/2012	109.49	104.07			147.02	42.95
MW-201	8/17/2012	101.60	DRY			135.65	NA
MW-202	8/17/2012	92.55	DRY			140.62	NA
MW-203	8/17/2012	102.30	DRY			143.71	NA
MW-204	8/17/2012	103.10	DRY			142.90	NA
MW-205	8/17/2012	98.27	DRY			140.09	NA
MW-501A	8/17/2012	93.27	DRY			130.89	NA
MW-502	8/17/2012	100.59	DRY			131.00	NA
MW-503B	8/17/2012	108.67	99.57			132.66	33.09
MW-504	8/17/2012	95.76	DRY			137.18	NA
MW-600A	8/17/2012	92.70	DRY			124.26	NA
MW-601A	8/17/2012	89.90	DRY			126.53	NA
MW-603	8/17/2012	97.60	DRY			120.95	NA
MW-604	8/17/2012	103.20	DRY			140.07	NA
MW-605	8/17/2012	93.98	DRY			116.82	NA
MW-606	8/17/2012	99.05	DRY			116.06	NA
MW-607	8/17/2012	107.05	DRY			128.28	NA 44.77
MW-701	8/17/2012	130.00	97.71			139.48	41.77
MW-702	8/17/2012	130.00	97.51			140.12	42.61
MW-703	8/17/2012	130.00	99.13			137.23	38.10
MW-704	8/17/2012	130.00	100.93			137.66	36.73
MW-705	8/17/2012	130.00	102.33			141.94	39.61
MW-706	8/17/2012	130.00	98.75			139.30	40.55
MW-707	8/17/2012	130.00	96.40	05.77	0.11	128.43	32.03
MW-708	8/17/2012	130.00	95.88	95.77	0.11	126.26	30.38
MW-709	8/17/2012	130.00	108.60			139.78	31.18

Table II Summary of Groundwater Level Measurements Former CENCO Refinery Santa Fe Springs, CA 3Q2012

			Depth to	Depth To	FPPH	Top of Casing	Groundwater
Well ID	Date	Total Depth	Groundwater	FPPH	Thickness	Elevation	Elevation
MW-710	8/17/2012	130.00	94.25			121.99	27.74
MW-711	8/17/2012	130.00	101.05			127.84	26.79
MW-712	8/17/2012	130.00	98.14			123.31	25.17
MW-713	8/17/2012	130.00	103.83			128.15	24.32
MW-714	8/17/2012	142.00	104.72			128.87	24.15
MW-715	8/17/2012	134.00	96.30			116.22	19.92

NOTES:

ft Feet

FPPH Free-phase petroleum hydrocarbons

amsl Above mean sea level
NM Not measured, inaccessible
NA Not available/applicable

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
EW-1	UG/L	11/1/1989	9800	730	16	1400A	, r	-				, ,	7-7-	<5	-	9.8	, ,	,	<5	<5	29
EW-1	UG/L	3/1/1990		1800	300	1800								<25		<50			<25	<25	<100
EW-1	UG/L	4/1/1990		1300	290	1600								<1		20	110		<10	<10	<20
EW-1	UG/L	8/21/1998	5000	230	<50	630			<50		150	<50	<50	<50		<50	<50		<50	<50	<100
EW-1	UG/L	1/28/1999	7900	110	<50	540			<50		130	<50	<50	<50		<50	<50		<50	<50	<100
EW-1 EW-1	UG/L UG/L	7/19/1999 1/13/2000	8000 NS	110 NS	<25 NS	1000 NS			<25 NS		<250 NS	<25 NS	25 NS	<25 NS		<25 NS	<25 NS		<25 NS	<13 NS	<13 NS
EW-1	UG/L	7/31/2000	NS NS	NS NS	NS NS	NS NS			NS		NS NS	NS NS	NS NS	NS NS		NS NS	NS NS		NS	NS	NS NS
EW-1	UG/L	2/6/2001	NS	NS NS	NS	NS			NS NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	7/26/2001	NS	NS	NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	5/6/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	9/25/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
EW-1	UG/L	11/10/2006	4800	65	<4	68	16	<4	<10	<100	42	6 9	<4	<4		8.4	6 3		<4	<4	<10
EW-1	UG/L	2/9/2007	4100	41	<2	39	9.4	<2	<5	<50	26	5.1	2.3	<2		7.8	6 5		<2	<2	<5
EW-1	UG/L	5/10/2007	3300	19	1.5	15	3.7	<4	<10	17	10	2.6	1.4	<4		6.9	6 9		<4	<4	<10
EW-1	UG/L	8/10/2007	3200	36	2.3	14	4.7	0.64	<5	15	20	3 2	1.4	<2		9.9	11		0 35	<2	<5 2.6
EW-1 EW-1	UG/L UG/L	2/8/2008 2/3/2011	4100 4500	73 20	1.9 1.5	4.9 27	<4 13	<4 <0.50	<10 <1.0	31 <10	5.3 42	0.48 <1.0	<4 <1.0	<4 <1.0	1.3	14 5.9	98	<1.0	0 54 <1.0	<4 <0.50	2.6 <1.0
EW-1	UG/L	2/3/2011	4200	20	1.4	27	13	<0.50	<1.0	<10	22	<1.0	<1.0	<1.0	1.1	5.9	3.5	<1.0	<1.0	<0.50	<1.0
EW-1	UG/L	4/13/2011	4700	29	3.2	51	28	0.74	<1.0	<10	67	19	<1.0	<1.0	3.7	8.9	8.6	<1.0	<1.0	<0.50	<1.0
	00,1	., 15, 2011	4,00		5.2	<u> </u>		5.74	11.0	110	, , , , , , , , , , , , , , , , , , ,		11.0	-1.0	5.7	5.5	0.0	11.0	1.0	.0.50	11.0
MW-104A	UG/L	7/19/1999	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	5.6		<1	1.2	<0.5
MW-104A	UG/L	1/13/2000	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	6.7		<1	<0.5	5.7
MW-104A	UG/L	8/2/2000	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	5.4		<1	<0.5	<0.5
MW-104A	UG/L	2/7/2001	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	4 2		<1	<0.5	<0.5
MW-104A	UG/L	7/25/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	3 9		<1	<0.5	<0.5
MW-104A	UG/L	5/7/2002	100	<0.5	<1	<1			<1	31000	<10	<1	<1	<1		<1	4 3		<1	<0.5	<0.5
MW-104A	UG/L	9/24/2002	<100	<0.5	<1	<1			<1	20000	<10	<1	<1	<1		1.4	5.4		<1	<0.5	<0.5
MW-104A MW-104A	UG/L UG/L	6/30/2004 10/7/2005	<200 <100	<5 <0.5	<5 <1	<5 <1	<1	<1	<5 <1	30J 83	<10	<5 <1	<5 <1	<5 <1		2J <1	8.1 3.4		<5 <1	<5 <0.5	<5 <0.5
MW-104A	UG/L	2/15/2006	<50	<1	<5	<5	<5	<5	<1	30	<5	<5	<5	<5		<5	2		<5	<5	<5
MW-104A	UG/L	2/7/2007	540	<2	<2	<2	<2	<2	<5	120	<5	<2	<2	<2		<2	<2		<2	<2	<5
MW-104A	UG/L	5/8/2007	33	<2	0.37	<2	<2	<2	<5	340	<5	<2	<2	<2		<2	18		<2	<2	<5
MW-104A	UG/L	8/8/2007	<50	<2	<2	<2	<2	<2	<5	150	<5	<2	<2	<2		0.51	2 9		<2	<2	<5
MW-104A	UG/L	11/5/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	81	<0.41	<0 23	<0.26	<0.32		0.71	4		<0.27	<0.28	<0.3
MW-104A	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	71	<5	<2	<2	<2		0.91	5 2		<2	<2	<5
MW-104A	UG/L	1/16/2009	46	<2	<2	<2	1	<2	<5	23	<5	0.55	<2	<2		0.57	4.6		<2	<2	<5
MW-104A	UG/L	4/22/2009	<50	<2	<2	<2	<2	<2	<5	38	<5	<2	<2	<2		0.62	4 5		<2	<2	<5
MW-104A	UG/L	3/3/2010	<50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0 <1.0		<1.0 <1.0	3.7 4.5		<1.0 <1.0	<0.50	<1.0
MW-104A MW-104A	UG/L UG/L	8/4/2010 11/3/2010	<50 <50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<10	<1.0	3.6	<1.0	<1.0	<0.50 <0.50	<1.0 <1.0
MW-104A	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2 2	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	6.4	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	3 3	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	2/9/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	3 8	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	5/9/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	18	<1.0	<1.0	<1.0	<1.0	<10	<1.0	43	<1.0	<1.0	<0.50	<1.0
MW-104A	UG/L	8/27/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.6	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-106A	UG/L	8/2/2006	310	2.6	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		21	13		<2	<2	10
MW-106A	UG/L	11/9/2006	82	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		17	14		<2	<2	7
MW-106A	UG/L	2/8/2007	270	2.6	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		20	15		<2	<2	13
MW-106A	UG/L	5/10/2007	210	1.5	<2	0.28	<2	<2	<5	20	<5	<2	<2	<2		12	9 9		0.6	<2	7.9
MW-106A	UG/L	8/9/2007	270	1.6	<2	0.6	<2	<2	<5	19	0.69	<2	<2	<2		14	12		0 83	<2	12
MW-106A	UG/L	11/7/2007	240	1.4	<0.36	0.84	<0.6	<0.3	<0.32	20	1.6	<0 23	<0.26	<0.32		9.5	11		0.7	<0.28	9.9
MW-106A	UG/L	2/5/2008	220	1.6	<2	0.42	<2	<2	<5	16	1.8	<2	<2	<2		7.8	10		0.73	<2	10
MW-106A	UG/L UG/L	1/19/2009	220	0.46 1.9	<2	<2 3.7	<2	<2 <2	<5 <5	17 18	<5 0.93	<2	<2 <2	<2 <2		11 6.3	13 5 5		0 99 0 82	<2 <2	6.3
MW-106A MW-106A	UG/L UG/L	4/23/2009 3/5/2010	290 590	1.9 8.4	<2 <0.50	<0.50	<2	<0.50	<1.0	<10	<1.0	<2 <1.0	<1.0	<1.0		2.0	35		<1.0	<0.50	10 <1.0
MW-106A	UG/L	5/13/2010	460	8.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	<1.0	-	<1.0	<0.50	21
MW-106A	UG/L	8/6/2010	450	12	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		3.5	10		1.2	<0.50	25
MW-106A	UG/L	11/4/2010	630	0.64	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	15	<1.0	<1.0	<0.50	8.8
MW-106A	UG/L	2/3/2011	570	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-106A	UG/L	4/19/2011	480	0.63	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	10	<1.0	<1.0	<0.50	6.9
MW-106A	UG/L	8/25/2011	540	0 51	<0.50	<0.50	<1.0	<0.50	<1.0	26	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	4.8
MW-106A	UG/L	11/14/2011	440	0 87	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-106A	UG/L	2/3/2012	440	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	11
MW-106A	UG/L	5/8/2012	630	7.1	<0.50	0.87	15	<0.50	<1.0	13	7.2	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	23
MW-106A	UG/L	8/24/2012	470	4.8	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	11
1014 4074	110/1	0/2/2006	770	2.7	.2	.2	2.4	-2		.50	.=		.2			2.4	2.0			.2	
MW-107A MW-107A	UG/L UG/L	8/2/2006 11/9/2006	770 780	3.7 24	<2 <2	<2 4.7	3.4 9.1	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	<2 <2		2.4 5.3	3 9 6 2		<2 <2	<2 <2	<5 <5
MW-107A	UG/L	2/8/2007	500	80	<2	21	25	<2	<5	<50	7.4	<2	<2	<2		7.4	9.6		<2	<2	<5
MW-107A	UG/L	5/10/2007	670	42	1	14	17	<2	<5	21	6	<2	0.29	<2		6	6.6		<2	<2	2
MW-107A	UG/L	8/9/2007	1000	61	2	15	41	<2	<5	18	8.5	<2	0.33	<2		9.5	8 8		0 31	<2	2.3
MW-107A	UG/L	11/7/2007	1500	44	4.2	16	26	<0.3	<0.32	35	11	<0 23	0.49	<0.32		9.4	6.4		0.3	<0.28	4.4
MW-107A	UG/L	2/5/2008	2800	19	3	3	12	<2	<5	37	3.9	<2	0.38	<2		9.2	5.6		0 29	<2	5
MW-107A	UG/L	1/19/2009	1100	13	1.9	1.5	9 9	0.43	<5	66	1.1	<2	0.29	<2		7.3	6 8		<2	<2	2
MW-107A	UG/L	1/19/2009	1200	12	1.9	1.6	9.6	0.38	<5 : -	62	1.3	<2	0.27	<2		7.5	7 2		<2	<2	1.8
MW-107A MW-107A	UG/L UG/L	4/23/2009 4/23/2009	1300 2400	74 79	1.1	13 13	94 91	0.47 0.47	<5 <5	67 66	6.6 7.5	3 2	2.8 2.7	<2 <2		10 11	8 5 9.4		<2 <2	<2 <2	1.3 1.3
MW-107A	UG/L	3/5/2010	1100	17	0.68	1.6	91	<0.50	<1.0	<10	6.0	<1.0	<1.0	<1.0		7.6	6.8		<1.0	<0.50	<1.0
MW-107A	UG/L	3/5/2010	1300	16	0.66	1.7		<0.50	<1.0	<10	5.6	<1.0	<1.0	<1.0		7.4	6.4		<1.0	<0.50	<1.0
MW-107A	UG/L	5/13/2010	1500	7.6	11	4.1		2.0	4.7	<10	3.3	2 0	<1.0	<1.0		4.7	4 8		<1.0	<0.50	<1.0
MW-107A	UG/L	5/13/2010	1100	8.8	11	4.2		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		5.9	5 9		<1.0	<0.50	<1.0
MW-107A	UG/L	8/6/2010	1300	120	150	39		1.3	<1.0	<10	24	19	<1.0	<1.0	·	7.5	10	· · · · · · · · · · · · · · · · · · ·	<1.0	<0.50	<1.0
MW-107A	UG/L	8/6/2010	1300	120	160	39		1.3	<1.0	<10	29	19	<1.0	<1.0		7.0	9 5		<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1400	39	11	16	29	<0.50	<1.0	<10	4.1	<1.0	<1.0	<1.0	7.5	5.8	7.7	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/4/2010	1600	36	10	14	26	<0.50	<1.0	<10	4.2	<1.0	<1.0	<1.0	7.1	5.1	69	<1.0	<1.0	<0.50	<1.0
MW-107A MW-107A	UG/L UG/L	2/3/2011 4/19/2011	740 1200	4.1 2.4	2.2 0.90	3.2 1.2	14 4.7	<0.50 <0.50	<1.0 <1.0	<10 <10	1.2 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	3.3 5.4	2.4 3.6	3 2 5 0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-107A	UG/L	4/19/2011	1200	2.4	0.99	1.2	5 2	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.9	4.2	5 9	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/25/2011	590	0 95	<0.50	<0.50	18	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.4	1.7	3.4	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/25/2011	480	0 84	<0.50	<0.50	1.4	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.9	1.4	3 0	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	11/14/2011	550	1.0	<0.50	<0.50	1.6	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.0	<1.0	4 8	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	1/31/2012	500	0 97	0.54	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.6	2.6	7 8	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	5/8/2012	710	0.78	<0.50	<0.50	<1.0	<0.50	<1.0	<10	2.1	<1.0	<1.0	<1.0	1.7	1.6	3.4	<1.0	<1.0	<0.50	<1.0
MW-107A	UG/L	8/24/2012	720	1.0	<0.50	<0.50	<1.0	<0.50	<1.0	11	<1.0	<1.0	<1.0	<1.0	2.5	1.8	3.4	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	2/9/1999	10000	970	<50	420					<50	<50	<50	<50		150	110		<50	<50	<100
MW-503B	UG/L	7/19/1999	7800	630	<20	540			<20		<200	<20	<20	<20		250	180		<20	<10	<100
MW-503B	UG/L	1/14/2000	14000	1000	32	870			<20		<200	<20	<20	<20		200	210		<20	<10	<10
MW-503B	UG/L	8/4/2000	5600	610	19	500			<10		23	<10	<10	<10		160	140		<10	<5	<5
MW-503B	UG/L	2/6/2001	5800	250	<20	320			<20		<200	<20	<20	<20		150	84		<20	<10	<10
MW-503B	UG/L	7/25/2001	5700	280	<50	230			<50		<500	<50	<50	<50		57	<50		<50	<25	<25
MW-503B	UG/L	5/9/2002	4500	81	3.5	77			<2	<20000	26	2 5	2.2	<2		23	23		<2	<1	7.7
MW-503B	UG/L	9/26/2002	3300	36	9.6	140		0.5	<1	<10000	48	2 5	3.7	<1		16	18		<1	<0.5	10
MW-503B MW-503B	UG/L UG/L	7/1/2004	5900 5400	160 1100	37 <20	89 73	42 38	<0.5 <20	<5 <20	<100 <200	42 <200	3J <20	4J <20	<5 <20		<20	3J <20		<5 <20	<5 <10	<5 <10
MW-503B	UG/L	10/5/2005 2/14/2006	5450	331	<50 <50	12	<250	<250	<10	<100	<50	<50 <50	<50	<50		<50	<50 <50		<50	<50	<50
MW-503B	UG/L	8/4/2006	4700	31	<2	3.5	2.1	2	7.6	<50	<5	<2	<2	<2		3.1	7 2		<2	<2	5.8
MW-503B	UG/L	11/10/2006	3500	26	<4	4.7	<4	<4	<10	<100	<10	<4	<4	<4		<4	4 9		<4	<4	<10
MW-503B	UG/L	2/9/2007	1600	59	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		2.2	11		<2	<2	5.4
MW-503B	UG/L	5/11/2007	1800	60	0.58	2.1	1	<2	1.3	<50	1.5	<2	0.61	<2		2.6	17		0.63	0.47	7.4
MW-503B	UG/L	8/10/2007	1800	80	0.62	1.7	1.1	<2	<5	<50	<5	0.23	0.44	<2		2	19		0.48	0.64	7.6
MW-503B	UG/L	11/8/2007	2400	270	3.6	3.7	4.7	<1.2	2.8	<20	11	<0.92	<1	<1.3		<1.1	15		<1.1	<1.1	7
MW-503B	UG/L UG/L	2/11/2008	2700	220 410	3.1	3.4 39	3 5 28	<8	3.4	<200 <250	18 36	<8 <10	<8 <10	<8 <10		1.4 <10	21 <10		<8	<8	6.3 25
MW-503B MW-503B	UG/L UG/L	1/21/2009 4/27/2009	6200 4000	210	14 11	24	18	<10 2.9	<25 2.2	<250 <50	29	0.53	2.9	<10 <2		<10	4 8		<10 <2	<10 1.2	25
MW-503B	UG/L	3/8/2010	2800	40	1.4	1.7	10	<0.50	2.9	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	6.7
MW-503B	UG/L	5/17/2010	2900	91	1.0	1.2		<0.50	5.1	<10	1.4	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	1.6	5.7
MW-503B	UG/L	8/9/2010	3700	270	5.3	2.4		0.65	<1.0	<10	3.4	<1.0	1.3	<1.0		<1.0	<1.0		<1.0	3.8	5.4
MW-503B	UG/L	11/8/2010	8000	690	320	180	580	170	8.2	<10	97	370	140	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	5.9
MW-503B	UG/L	11/8/2010	12000	940	440	250	800	230	9.6	<10	250	450	170	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.7	6.1
MW-503B	UG/L	2/4/2011	57000	1400	7700	2900	15000	5900	<1.0	<10	5200	15000	4400	<1.0	<10	<1.0	2.7	<1.0	<1.0	4.8	<1.0
MW-503B	UG/L	4/15/2011	41000	3400	3200	1800	7200	2600	9.1	63	370	2100	640	<1.0	<10	<1.0	1.4	<1.0	<1.0	<0.50	8.0
MW-503B MW-503B	UG/L UG/L	4/15/2011 8/29/2011	39000 13000	2200 590	2500 270	1400 440	5200 1300	2000 670	9.0 4.4	64 <10	260 200	1800 470	620 150	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	1 5 2.7	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	6.9 1.1
MW-503B	UG/L UG/L	11/16/2011	6700	170	160	220	550	280	<1.0	<10	170	290	96	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-503B	UG/L	1/31/2012	5400	250	120	270	580	290	<1.0	<10	150	300	57	<1.0	<10	<1.0	3 3	<1.0	<1.0	2.0	<1.0
MW-503B	UG/L	1/31/2012	5200	280	120	300	650	330	<1.0	<10	170	340	55	<1.0	<10	<1.0	35	<1.0	<1.0	2.1	<1.0
MW-503B	UG/L	5/8/2012	11000	920	170	820	1800	250	<1.0	<10	150	770	100	<1.0	<10	<1.0	60	<1.0	<1.0	0.56	2.5
MW-503B	UG/L	8/30/2012	2000	130	19	100	190	39	3.9	<10	98	120	34	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

Table III
Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results
Former Powerine Refinery
Santa Fe Springs, CA
3Q2012

Location	Unit	Date	TPH-g	R	т	F	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-701	UG/L	2/4/2011	190	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	4.3	1.6	9 5	1.7	<1.0	<0.50	<1.0
MW-701	UG/L	4/11/2011	230	1.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	14	2.3	14	3.8	1.0	<0.50	6.0
MW-701	UG/L	8/30/2011	190	2.5	<0.50	<0.50	<1.0	<0.50	<1.0	19	<1.0	<1.0	<1.0	<1.0	14	2.3	9 0	3.4	<1.0	<0.50	5.2
MW-701	UG/L	8/30/2011	290	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	29	<1.0	<1.0	<1.0	<1.0	11	2.0	7.7	2.8	<1.0	<0.50	4.0
MW-701	UG/L	11/16/2011	310	2.5	0.62	1.4	3 5	1.8	<1.0	<10	7.6	3.4	<1.0	1.3	13	<1.0	9 2	4.6	<1.0	<0.50	<1.0
MW-701 MW-701	UG/L UG/L	2/1/2012 5/11/2012	300 260	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	8.9 15	3.8 3.8	14 14	4.3 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 5.5
MW-701	UG/L	8/31/2012	350	0.75	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	2.7	16	2.9	18	5.3	<1.0	<0.50	3.7
MW-701	UG/L	8/31/2012	340	0.73	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	2.5	15	2.8	17	5.0	<1.0	<0.50	3.5
MW-702	UG/L	2/4/2011	2300	91	0.74	0.92	<1.0	<0.50	<1.0	<10	5.2	<1.0	1.5	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	4/12/2011	910	6.3	<0.50	<0.50	<1.0	<0.50	<1.0	32	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2 0	<1.0	1.3	<0.50	1.1
MW-702	UG/L	8/30/2011	260	15	<0.50	<0.50	<1.0	<0.50	<1.0	59	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2 9	<1.0	<1.0	<0.50	1.1
MW-702 MW-702	UG/L UG/L	11/16/2011 2/9/2012	1400 1400	99 480	0.59 1.3	0.51 0.65	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	2.9 3.4	<1.0 <1.0	1.0 1.2	<1.0 <1.0	<10 <10	<1.0 <1.0	2 5 <1.0	<1.0 <1.0	1.2 <1.0	<0.50 <0.50	<1.0 <1.0
MW-702	UG/L	2/9/2012	1500	470	1.3	0.71	<1.0	<0.50	<1.0	<10	3.3	<1.0	1.3	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	5/11/2012	6000	2700	2.7	1.0	1.4	0.85	<1.0	<10	4.2	<1.0	4.4	<1.0	<10	<1.0	15	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	8/31/2012	1200	88	5.9	1.8	<1.0	0.94	<1.0	<10	<1.0	<1.0	2.0	<1.0	<10	<1.0	1 2	<1.0	<1.0	<0.50	<1.0
MW-702	UG/L	8/31/2012	4300	72	6.2	1.9	<1.0	0.99	<1.0	<10	<1.0	<1.0	2.1	<1.0	<10	<1.0	1 3	<1.0	<1.0	<0.50	<1.0
A 41/ TOO	110.11	2/4/2211	4000	22	4.2		2.2	.0.50	.4.0	.4.0	4.5	4.0	.4.0	.4.0	2.2		4.0	2.5		.0.50	
MW-703 MW-703	UG/L UG/L	2/4/2011 4/12/2011	1300 1100	33 76	1.3	5.2 7.8	2 8 4 8	<0.50 <0.50	<1.0 1.4	<10 <10	1.6	1 8 2.7	<1.0 <1.0	<1.0 <1.0	2.0	<1.0	18 10	3.6 1.7	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-703	UG/L UG/L	8/30/2011	2100	170	1.4 3.4	7.8	85	<0.50	3.3	<10 50	<1.0 <1.0	2.7	1.1	<1.0	1.1	<1.0 <1.0	8.7	<1.0	<1.0	<0.50	1.3
MW-703	UG/L	11/17/2011	1700	170	3.8	25	5.6	<0.50	<1.0	<10	<1.0	2.5	1.2	<1.0	<1.1	<1.0	8.8	<1.0	<1.0	<0.50	<1.0
MW-703	UG/L	11/17/2011	1400	150	3.4	21	4.7	<0.50	<1.0	<10	<1.0	2 2	1.0	<1.0	<10	<1.0	9 2	<1.0	<1.0	<0.50	<1.0
MW-703	UG/L	2/14/2012	470	48	0.72	1.4	19	<0.50	<1.0	<10	1.1	<1.0	<1.0	<1.0	2.6	1.0	28	3.0	<1.0	<0.50	2.5
MW-703	UG/L	5/11/2012	500	10	<0.50	0.55	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	14	<1.0	<1.0	<0.50	1.1
MW-703 MW-703	UG/L UG/L	8/31/2012 8/31/2012	490 430	39 40	<0.50 <0.50	<0.50 0.52	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	12 13	1.5 1.5	<1.0 <1.0	<0.50 <0.50	1.2 1.1
10100-703	UG/L	8/31/2012	430	40	<0.50	0.52	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	15	1.5	<1.0	<0.50	1.1
MW-704	UG/L	2/9/2011	27000	1800	2000	610	3600	680	210	<10	120	1200	520	<1.0	2.3	<1.0	2 5	<1.0	1.2	38	<1.0
MW-704	UG/L	2/9/2011	26000	1900	2400	620	3700	720	430	<10	96	1300	550	<1.0	<10	<1.0	2 5	<1.0	1.3	40	<1.0
MW-704	UG/L	4/13/2011	5400	170	110	200	190	68	73	<10	38	<1.0	<1.0	<1.0	<10	<1.0	5.6	<1.0	6.0	7.0	2.0
MW-704	UG/L	8/31/2011	11000	570	600	300	540	180	180	160	58	410	170	<1.0	<10	<1.0	3 8	<1.0	3.5	25	1.5
MW-704	UG/L	9/1/2011	2200	1200	95	92	1500	170	17	46	87	160	35	<1.0	<1.0	<1.0	6.6	<1.0	<1.0	<0.50	4.6
MW-704 MW-704	UG/L UG/L	11/17/2011 2/14/2012	10000 7700	550 310	430 89	420 390	520 530	180 95	190 100	<10 73	37 50	490 500	210 210	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	3.4 5 3	<1.0 <1.0	3.9 5.7	18 5.9	<1.0 3.1
MW-704	UG/L	2/14/2012	7800	320	89	410	560	96	130	80	53	510	220	<1.0	<10	<1.0	4 5	<1.0	4.9	6.2	2.3
MW-704	UG/L	5/14/2012	11000	450	250	360	520	99	130	45	61	410	150	<1.0	<10	<1.0	2 8	<1.0	3.3	12	1.2
MW-704	UG/L	5/14/2012	9000	460	260	360	530	98	140	56	77	420	150	<1.0	<10	<1.0	3 0	<1.0	3.4	12	1.2
MW-704	UG/L	9/4/2012	7800	580	30	550	760	33	44	24	3.6	670	260	<1.0	<10	<1.0	2.4	<1.0	2.6	3.4	<1.0
NAVA / 70F	116/1	2/4/2011	2100	450	2.5	F 4	C 4	0.54	00	0.4	6.7	-1.0	1.2	-1.0	-1.0	-1.0	2.0	-1.0	-1.0	10.50	-1.0
MW-705 MW-705	UG/L UG/L	2/4/2011 4/12/2011	3100 930	450 55	3.5 0.87	5.1 1.7	6.4 1.6	0.54 <0.50	90	94 31	6.7 <1.0	<1.0 1 3	1.3 <1.0	<1.0 <1.0	<10 <10	<1.0 <1.0	2 0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-705	UG/L	8/31/2011	1300	79	1.4	3.3	2 3	<0.50	13	66	<1.0	19	1.3	<1.0	<10	<1.0	4 2	<1.0	<1.0	0.56	1.2
MW-705	UG/L	11/17/2011	1100	56	7.6	24	29	6.3	73	<10	38	31	9.8	<1.0	<10	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
MW-705	UG/L	2/14/2012	410	52	1.2	7.0	78	0.66	250	240	3.3	8.1	3.8	<1.0	<10	<1.0	8 9	1.3	<1.0	<0.50	1.8
MW-705	UG/L	2/14/2012	440	49	0.86	5.6	5.7	<0.50	250	230	<1.0	5 0	2.6	<1.0	<10	<1.0	8 3	1.3	<1.0	<0.50	1.5
MW-705	UG/L	5/14/2012	600	27	1.2	2.8	5.6	0.76	64	49	12	5 9	2.0	<1.0	<10	<1.0	7.4	1.4	<1.0	<0.50	<1.0
MW-705 MW-705	UG/L UG/L	5/14/2012 9/4/2012	610 100	36 0.79	<0.50 <0.50	2.1 <0.50	5.6 <1.0	<0.50 <0.50	60 12	33 <10	<1.0 <1.0	1.1 <1.0	<1.0 <1.0	<1.0 <1.0	1.0 <1.0	<1.0 <1.0	8 3 13	1.8 2.0	<1.0 <1.0	<0.50 0.51	<1.0 <1.0
10.00 703	55/1	5/ -/ 2012	100	0.73	10.50	10.50	11.0	10.50		110	`1.0	`1.0	11.0	-1.0	110	`1.0	1.5	2.0	1.0	0.51	11.0
MW-706	UG/L	2/4/2011	390	4.9	0.57	<0.50	<1.0	<0.50	4.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	3.6	<1.0	<1.0	<0.50	<1.0
MW-706	UG/L	4/11/2011	540	9.0	<0.50	<0.50	<1.0	<0.50	5.9	89	<1.0	<1.0	<1.0	<1.0	<10	<1.0	6 0	<1.0	<1.0	<0.50	2.6
MW-706	UG/L	8/31/2011	1100	25	0.86	0.65	19	<0.50	5.4	54	<1.0	<1.0	<1.0	<1.0	<10	<1.0	4 3	<1.0	<1.0	<0.50	1.9
MW-706 MW-706	UG/L UG/L	11/18/2011	490 350	9.5 16	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 4.4	<10 16	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<10 <10	<1.0 <1.0	3 3 4 5	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 2.5
MW-706	UG/L UG/L	2/14/2012 5/14/2012	350 1300	22	<0.50 1.0	<0.50 0.95	2.6	0.50	6.8	16	<1.0	<1.0	<1.0 <1.0	<1.0	<10	<1.0	3.7	<1.0	<1.0	<0.50	1.5
MW-706	UG/L	5/14/2012	1500	23	1.0	1.0	2.6	0.53	7.0	17	<1.0	<1.0	<1.0	<1.0	<10	<1.0	4 0	<1.0	<1.0	<0.50	1.6
MW-706	UG/L	9/4/2012	410	12	<0.50	<0.50	1 2	<0.50	5.8	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	4 8	<1.0	<1.0	<0.50	1.2
MW-707	UG/L	2/4/2011	2000	520	120	7.6	120	150	15	<10	<1.0	10	7.8	4.1	8.7	<1.0	7 0	6.9	<1.0	2.7	<1.0
MW-707	UG/L	4/8/2011	7000	1000	560	180	670	310	15	<10	26	74	27	<1.0	3.2	<1.0	8.7	1.6	<1.0	4.0	<1.0
MW-707 MW-707	UG/L UG/L	11/18/2011 2/1/2012	8300 10000	930 1200	120 150	55 100	1900 1100	120 96	<1.0 <1.0	<10 <10	150 110	250 220	53 69	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-707	UG/L	5/15/2012	9700	1000	200	82	870	74	15	12	120	190	42	<1.0	<10	<1.0	3 2	<1.0	<1.0	<0.50	2.3
MW-707	UG/L	9/4/2012	6700	1400	41	26	220	29	9.7	<10	5.2	55	26	<1.0	<10	<1.0	38	<1.0	<1.0	1.3	1.5
	·																				
MW-708	UG/L	2/4/2011	530000	1400	420	3000	8100	13	330	<10	370	2200	92	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

Location	Unit	Date	TPH-g	В	Т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
MW-708	UG/L	9/1/2011	38000	1900	230	1200	2200	54	2300	2500	150	440	430	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	11/18/2011	18000	1100	62	630	860	30	1000	<100	180	940	390	<10	<10	<10	<10	<10	<10	<5 0	<10
MW-708	UG/L	2/10/2012	18000	1700	74	770	1000	38	830	<10	170	1100	410	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-708	UG/L	5/15/2012	57000	870	39	550	750	18	450	120	110	430	380	<1.0	<10	<1.0	<1.0	<1.0	<1.0	0.86	<1.0
MW-708	UG/L	9/5/2012	17000	1400	75	710	1000	32	390	<10	160	1400	520	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	2/4/2011	500	16	1.0	<0.50	4 8	1.1	2.8	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	4/6/2011	580	26	0.86	0.89	4.1	0.72	4.6	<10	2.7	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	9/1/2011	9900	1.1	<0.50	0.91	4.6	1.2	7.6	60	<1.0	2.4	1.2	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	11/21/2011	1100	<0.50	<0.50	0.77	2.1	0.75	6.4	<10	4.6	1.4	1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	2/10/2012	760	<0.50	<0.50	<0.50	<1.0	<0.50	4.4	180	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	5/16/2012	920	<0.50	<0.50	<0.50	<1.0	<0.50	4.7	20	1.1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-709	UG/L	9/5/2012	670	<0.50	0.86	<0.50	18	0.67	2.2	23	12	12	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-710	UG/L	2/8/2011	93	0 84	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	55	93	2.9	14	41	3.1	0.81	1.3
MW-710	UG/L	2/8/2011	110	0.75	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	54	89	2.9	14	41	3.1	<0.50	1.2
MW-710	UG/L	4/7/2011	<50	0 81	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	76	72	4.1	19	56	4.9	1.5	2.0
MW-710	UG/L	4/7/2011	100	0 84	<0.50	<0.50	<1.0	<0.50	<1.0	<10	1.0	<1.0	<1.0	82	92	4.0	18	54	4.7	1.5	1.9
MW-710	UG/L	9/2/2011	380	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	76	97	2.0	17	50	4.3	1.2	1.1
MW-710 MW-710	UG/L UG/L	9/2/2011 11/21/2011	100 95	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	58 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	76 51	100 71	2.2 1.5	18 13	54 35	4.6 3.6	1.2 <0.50	1.3 <1.0
MW-710	UG/L UG/L	11/21/2011	79	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0 <1.0	<10	<1.0	<1.0	<1.0	52	71	1.5	13	34	3.4	<0.50	<1.0
MW-710	UG/L	2/1/2012	170	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	66	110	2.1	23	71	6.0	<0.50	<1.0
MW-710	UG/L	5/16/2012	130	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	53	77	1.2	19	48	4.4	<0.50	<1.0
MW-710	UG/L	9/5/2012	100	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	3.8	10	<1.0	77	91	<1.0	16	56	3.9	<0.50	1.2
A 4047 = 4.4	110.11	2/0/2211	44000	500	440	400	200	250	4.5	.40	262	400	440	.4.0	0.1	4.0	4 -		4.0	.0.50	7-
MW-711 MW-711	UG/L UG/L	2/8/2011 4/6/2011	11000 7100	520 <0.50	440 <0.50	120 65	380 160	250 50	11 20	<10 <10	260 420	180 52	110 36	<1.0 <1.0	8.4 1.1	<1.0 <1.0	4 5 2.6	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	7.5 8.7
MW-711	UG/L	9/2/2011	44000	1600	1800	650	3000	1100	25	<10	620	1800	550	<1.0	<1.1	1.3	3.8	<1.0	<1.0	<0.50	17
MW-711	UG/L	11/21/2011	14000	370	290	530	1800	790	<1.0	<10	880	480	98	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-711	UG/L	2/10/2012	23000	1900	2100	440	1800	770	14	<10	360	480	150	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-711	UG/L	5/16/2012	25000	2900	3200	730	3000	1200	14	<10	370	<1.0	300	<1.0	<10	<1.0	3 0	<1.0	<1.0	<0.50	5.9
MW-711	UG/L	9/5/2012	28000	2100	2000	640	2000	1100	5.9	<10	370	720	120	<1.0	<10	<1.0	2 2	<1.0	<1.0	<0.50	5.8
MW-712	UG/L	2/9/2011	14000	1200	520	380	1800	390	23	<10	98	460	170	<1.0	<10	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	4/7/2011	94	860	140	270	1100	170	32	<10	140	580	220	<1.0	1.8	<1.0	3.4	<1.0	<1.0	0.64	2.2
MW-712	UG/L	9/2/2011	6300	440	77	100	350	72	19	<10	43	180	76	<1.0	<10	<1.0	2.8	<1.0	<1.0	0.71	<1.0
MW-712	UG/L	11/21/2011	8000	600	60	90	310	60	<1.0	<10	65	140	72	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-712	UG/L	2/13/2012	8300	850	57	62	180	46	21	94	24	86	44	<1.0	<10	<1.0	3.4	<1.0	<1.0	<0.50	1.7
MW-712	UG/L	5/17/2012	8400	650	130	180	740	150	86	22	44	240	77	<1.0	<10	<1.0	3 0	<1.0	<1.0	<0.50	1.1
MW-712	UG/L	9/6/2012	10000	1100	27	47	110	40	110	97	49	88	33	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	2/9/2011	280	29	<0.50	<0.50	1.7	<0.50	3.5	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2 2	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	4/8/2011	1000	150	<0.50	0.91	1.6	<0.50	75	120	2.8	<1.0	<1.0	<1.0	<10	<1.0	5.4	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	9/2/2011	310	73	3.0	1.7	78	3.6	71	100	11	7 0	1.6	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/22/2011	3300	900	1.6	3.4	12	2.6	230	220	2.2	2 0	<1.0	<1.0	<10	<1.0	2 5	<1.0	<1.0	<0.50	<1.0
MW-713	UG/L	11/22/2011	3500	800	1.9	3.8	14	2.9	230	230	2.7	2.4	<1.0	<1.0	<10	<1.0	2 8	<1.0	<1.0	<0.50	<1.0
MW-713 MW-713	UG/L UG/L	2/13/2012 5/17/2012	5500 5100	1900 2300	2.2	4.6 5.3	98	2.5 1.3	390 400	160 110	<1.0 3.6	1.6 1.1	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	3.1 2.2	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-713	UG/L UG/L	9/6/2012	9600	1600	3.5	6.4	68	1.5	410	75	3.b 14	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
, 15		-/ 5/ 2512	3555	1000	5.5	U. .		2.0	.10			12.0	12.0	-2.0		12.0	12.5	-2.0	12.5	.0.00	-2.0
MW-714	UG/L	2/14/2011	370	1.3	<0.50	<0.50	<1.0	<0.50	10	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	4/7/2011	16000	16	4.0	2.1	11	1.9	16	<10	23	4.7	1.4	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	9/2/2011	500	3.8	<0.50	<0.50	1.1	<0.50	9.7	37	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714 MW-714	UG/L UG/L	11/22/2011 11/22/2011	430 490	9.0	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	8.4 7.9	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
MW-714	UG/L UG/L	2/13/2012	760	3.9	<0.50	<0.50	<1.0	<0.50	7.9	23	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	2/13/2012	730	5.0	0.72	<0.50	1.1	<0.50	8.4	29	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	5/18/2012	390	2.4	<0.50	<0.50	<1.0	<0.50	7.1	<10	1.2	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-714	UG/L	9/6/2012	500	1.6	<0.50	<0.50	<1.0	<0.50	2.3	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		0/44/55::	2555		4.5				0.5			0.5								0	
MW-715	UG/L	2/14/2011	2000	480	12	1.7	24	7.4	2.8	<10	<1.0	2.6	4.2	<1.0	<1.0	<1.0	15	<1.0	<1.0	<0.50	<1.0
MW-715 MW-715	UG/L UG/L	4/8/2011 9/2/2011	1500 5500	310 800	5.6 2.5	1.0 4.0	3.6 12	1.6 5.3	8.8 8.2	<10 22	3.8 5.0	<1.0 4 5	1.7 4.8	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 1 5	<1.0 <1.0	<1.0 <1.0	<0.50 0.56	<1.0 1.9
MW-715	UG/L	9/2/2011	1100	420	1.4	2.2	6.1	2.5	7.9	20	3.8	2.5	4.6	<1.0	<10	<1.0	15	<1.0	<1.0	0.53	1.9
MW-715	UG/L	11/22/2011	1500	450	1.5	6.0	<1.0	<0.50	8.5	11	3.5	4 0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	2/1/2012	860	270	2.6	1.7	5.6	1.1	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
MW-715	UG/L	5/18/2012	13000	2100	19	1100	1900	350	4.3	<10	230	930	270	<1.0	<10	<1.0	1.4	<1.0	<1.0	<0.50	2.1
MW-715	UG/L	9/6/2012	610	11	0.56	62	<1.0	<0.50	1.2	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-1	UG/L	11/1/1989		390	3.9	2.1								<0.5A		<0.5A			3.5A	<0 5A	21
W-1	UG/L	3/1/1990		140	<5	<5								<5		<10			<5	<5	<20
W-1	UG/L	4/1/1990	000	200	12	12			-10		10	-5	45	<5		<5	<25		1.6	<5	<5
W-1 W-1	UG/L UG/L	12/18/1996 1/14/1998	800 1100	78 62	<5 <5	<5 <5			<10 <5		10 <10	<5 <5	<5 <5	<5 <5		<5 <5	<5 <5		<5 <5	<5 <5	<10 16
W-1	UG/L	8/20/1998	1200	79	<5	<5			14		<10	<5	<5	<5		<5	8.6		8.4	<5	26
W-1	UG/L	1/29/1999	1400	57	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	18
W-1 W-1	UG/L UG/L	7/19/1999 8/3/2000	1500 880	48 29	<2	<2			<2 10		<20 <10	<2 <1	<2	<2		<2	<2 1.6		<2 1.6	<1	<1 7.3
W-1	UG/L	2/8/2001	<500	29	<1 <1	<1 <1			68		<10	<1	<1 <1	<1 <1		<1 <1	2.3		<1	<0 5 <0 5	6.3
W-1	UG/L	7/26/2001	620	18	<1	<1			62		<10	<1	<1	<1		<1	2 8		1.8	<0.5	6.8
W-1	UG/L	5/8/2002	280	7.7	<1	<1			5.9	44000	<10	<1	<1	<1		<1	3.1		<1	<0.5	6.4
W-1 W-1	UG/L UG/L	9/25/2002 7/1/2004	210 460	12 14	<1 2.8	<1 1.5	<0.5	<0.5	1.9 3J	30000 <100	<10 <5	<1 <5	<1 <5	<1 <5		<1 4J	6 5 9 3		<1 1J	<0 5 <5	14 2
W-1	UG/L	10/6/2005	310	43	<1	<1.3	<1	<1	25	34	<10	<1	<1	<1		1.6	<1		<1	<0.5	7.1
W-1	UG/L	2/15/2006	266	32	<5	<5	<5	<5	22	37	<5	<5	<5	<5		1.3	<5		<5	<5	3.3
W-1	UG/L	8/3/2006	1100	86	<2	<2	<2	<2	77	100	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-1 W-1	UG/L UG/L	11/9/2006 2/8/2007	470 500	100 77	<2 <2	<2 <2	<2 <2	<2 <2	65 21	78 <50	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	<2 <2		<2 <2	<2 <2	<5 <5
W-1	UG/L	5/10/2007	890	110	0.57	0.61	<2	0.32	28	43	1	<2	<2	<2		0.42	<2		<2	<2	1.8
W-1	UG/L	8/9/2007	1100	140	0.84	0.84	<2	0.63	64	84	1.1	<2	<2	<2		0.47	<2		0 32	<2	1.9
W-1	UG/L	11/7/2007	1200	140	1.6	1.2	0.68	0.91	56	80	1.6	0.38	2.1	<0.32		0.7	<0.32		<0.27	<0.28	1.2
W-1 W-1	UG/L UG/L	2/7/2008 1/20/2009	1000 230	96 15	<2 <2	<2 <2	<2 <2	<2 <2	31 3.1	51 23	<5 <5	<2 <2	<2 <2	<2 <2		<2 0.87	<2 <2		<2 0 58	<2 <2	<5 2.8
W-1	UG/L	1/20/2009	220	19	<2	<2	<2	<2	3.9	35	<5	<2	<2	<2		1.1	0.4		0.61	<2	3.7
W-1	UG/L	4/24/2009	180	3.9	<2	<2	<2	<2	<5	26	<5	<2	<2	<2		1.4	<2		0.74	<2	9.5
W-1	UG/L	3/5/2010	270	3.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	1.3
W-1 W-1	UG/L UG/L	5/13/2010 8/6/2010	260 260	9.3 17	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<0.50 <0.50	1.2 <1.0
W-1	UG/L	11/5/2010	150	15	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	2/4/2011	200	2.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	4/14/2011	150	1.4	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-1 W-1	UG/L UG/L	8/26/2011 11/14/2011	130 160	3.9 12	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	1.3 <1.0	16 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	4.2 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	6.4 <1.0
W-1	UG/L	11/14/2011	160	12	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	5.1	<1.0	<1.0	<1.0	<0.50	<1.0
W-1	UG/L	2/6/2012	160	18	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	3.7	<1.0	<1.0	<1.0	<0.50	2.4
W-1	UG/L	5/7/2012	680	15	<0.50	<0.50	<1.0	<0.50	<1.0	23	<1.0	<1.0	<1.0	<1.0	<10	2.2	<1.0	<1.0	<1.0	<0.50	1.8
W-1	UG/L	8/27/2012	180	9.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-10	UG/L	11/8/2006	26000	8200	5000	570	2100	820	<100	<1000	340	360	110	<40		<40	<40		<40	<40	<100
W-10	UG/L	2/9/2007	28000	6400	2200	520	2200	710	<500	<5000	<500	280	<200	<200		<200	<200		<200	<200	<500
W-10 W-10	UG/L UG/L	2/9/2007 5/11/2007	26000 7900	5100 430	1600 140	410 100	1800 480	570 130	<500 <10	<5000 84	<500 100	260 130	<200 48	<200 <4		<200 <4	<200 6		<200 8.2	<200 1.2	<500 3.6
W-10 W-10	UG/L	5/11/2007	7800	500	160	110	540	150	<25	85	150	150	53	<10		<10	6.6		8.8	1.4	3.9
W-10	UG/L	8/9/2007	5400	590	20	82	330	40	<25	68	59	90	33	<10		<10	6.4		8	<10	3
W-10	UG/L	11/9/2007	<12000	4700	460	330	1300	240	<32	<490	240	190	55	<32		<27	<32		<27	<28	<30
W-10 W-10	UG/L UG/L	2/8/2008 2/8/2008	<28000 <25000	7200 7600	280 310	300 330	1300 1400	190 200	<500 <500	<5000 <5000	140 170	140 150	38 42	<200 <200		<200 <200	<200 <200		<200 <200	<200 <200	<500 <500
W-10 W-10	UG/L	1/21/2009	20000	8100	<200	440	1400	<200	<500	<5000	<500	230	<200	<200		<200	<200		<200	<200	<500
W-10	UG/L	4/27/2009	16000	7400	<200	490	1400	<200	<500	<5000	270	230	36	<200		<200	<200		<200	<200	<500
W-10	UG/L	4/27/2009	15000	5100	<200	350	830	<200	<500	<5000	220	190	31	<200		<200	<200		<200	<200	<500
W-10 W-10	UG/L UG/L	3/8/2010 3/8/2010	12000 8600	4200 3100	4.4 <250	200 <250		1.6 <250	<1.0 <500	<10 <5000	110 <500	93 <500	18 <500	<1.0 <500		<1.0 <500	<1.0 <500		<1.0 <500	7.3 <250	<1.0 <500
W-10	UG/L	5/17/2010	9500	3900	7.4	230		1.9	<1.0	<10	130	70	13	<1.0		<1.0	<1.0		<1.0	2.7	<1.0
W-10	UG/L	5/17/2010	10000	2900	10	160		1.7	<1.0	15	110	82	14	<1.0		<1.0	<1.0		<1.0	4.2	<1.0
W-10	UG/L	8/9/2010	7900	2400	12	130	140	1.9	<1.0	93	60	62	10	<1.0	-4.0	<1.0	<1.0	-1.0	<1.0	3.0	<1.0
W-10 W-10	UG/L UG/L	11/8/2010 2/8/2011	7700 11000	2900 2600	45 100	160 160	140 140	6.4 28	<1.0 <1.0	<10 <10	180 150	56 61	8.1 13	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	1.0 <1.0	2.6 4.0	1.4 <1.0
W-10	UG/L	4/21/2011	12000	4900	97	240	190	38	<1.0	250	150	65	15	<1.0	<10	<1.0	<1.0	<1.0	1.6	12	<1.0
W-10	UG/L	9/1/2011	8200	2900	2.2	120	44	1.1	<1.0	140	97	31	5.7	<1.0	<10	<1.0	<1.0	<1.0	<1.0	4.9	<1.0
W-10	UG/L	11/16/2011	8800	840	3.9	190	92	1.1	<1.0	<10	94	49	10	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-10 W-10	UG/L UG/L	2/8/2012 5/10/2012	10000 1000	3100 15	5.5 <0.50	230 1.4	150 1 2	2.9 <0.50	<1.0 <1.0	<10 <10	130 21	73 4 3	12 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	5.6 <0.50	<1.0 <1.0
W-10	UG/L	8/28/2012	8200	3100	4.3	160	32	1.4	<1.0	61	270	27	2.8	<1.0	<10	<1.0	<1.0	<1.0	<1.0	2.8	<1.0
W-11	UG/L	11/9/2006	5200	99	12	74	240	37	<5	<50	<5	73	40	<2		<2	18		<2	<2	<5 .f
W-11 W-11	UG/L UG/L	11/9/2006 2/9/2007	12000 8000	96 95	7.8 14	54 78	140 280	21 27	<5 <10	<50 <100	<5 <10	60 56	34 28	<2 <4		<2 <4	18 15		<2 <4	<2 <4	<5 <10
AA-TŢ	UG/L	4/3/400/	0000	33	14	/0	200	41	/10	/100	/10	30	40	\4		<u>\</u> 4	13		\4	\4	<u></u>

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-11	UG/L	5/9/2007	540	45	1.6	19	47	3.1	<5	<50	0.68	9	4.4	<2		0.41	18		<2	<2	0.96
W-11	UG/L	8/8/2007	<1100	700	3.7	36	11	7.1	<5	<50	0.81	15	8.6	<2		<2	9 9		<2	0.29	1.1
W-11	UG/L	11/8/2007	460	61	1.2	14	37	13	<0.32	<4 9	1	35	17	<0.32	.1.0	<0.27	10	-1.0	<0.27	<0.28	<0.3
W-11 W-11	UG/L UG/L	12/8/2010 2/4/2011	77000 10000	150 100	51 1.2	260 23	2300 100	690 16	17 <1.0	43 <10	48 7.6	1300 100	800 180	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	1.4 <1.0	<0.50 <0.50	<1.0 <1.0
W-11	UG/L	4/15/2011	6300	410	15	50	390	18	<1.0	<10	3.4	83	280	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11	UG/L	8/29/2011	10000	560	2.2	57	640	14	<1.0	<10	<1.0	100	190	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11	UG/L	11/14/2011	10000	620	3.0	100	510	7.5	<1.0	<10	6.0	130	240	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-11	UG/L	2/8/2012	2900	12	<0.50	6.2	50	0.80	<1.0	<10	2.7	24	39	<1.0	<10	<1.0	2 0	<1.0	<1.0	0.90	<1.0
W-11 W-11	UG/L UG/L	5/10/2012 8/28/2012	1800 7400	8.4 16	<0.50 30	3.1 47	7 3 130	0.80 20	<1.0 <1.0	<10 <10	1.7 5.0	4.6 70	10 97	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	2.0	<1.0 <1.0	<1.0 <1.0	0.50 <0.50	<1.0 <1.0
VV-11	UG/L	8/28/2012	7400	10	30	47	130	20	<1.0	<10	5.0	70	97	<1.0	<10	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	11/8/2006	1400	<2	<2	<2	<2	<2	<5	55	<5	<2	<2	<2		<2	5.4		<2	<2	<5
W-12	UG/L	2/7/2007	4800	<2	<2	<2	<2	<2	<5	50	<5	<2	<2	<2		<2	68		<2	<2	<5
W-12	UG/L	5/9/2007	220	<2	<2	<2	<2	<2	<5	40	<5	<2	<2	<2		0.31	4 3		<2	0.37	1.1
W-12	UG/L	8/8/2007	1100	<2	<2	0.56	<2	<2	0 36	40	<5	<2	<2	<2		<2	3.1		<2	<2	0.85
W-12 W-12	UG/L UG/L	11/6/2007 2/8/2008	1500 410	0 37 0 94	<0.36 <2	0.97 3	<0.6 <2	<0.3 <2	1.2 0 82	58 54	0.66 2.5	<0 23 <2	<0.26 <2	<0.32 <2		<0.27 <2	2.6		<0.27 <2	0.42 0.45	0.47 <5
W-12	UG/L	1/20/2009	620	<2	<2	0.69	<2	<2	<5	32	<5	<2	<2	<2		0.48	5.4		<2	<2	2.4
W-12	UG/L	4/22/2009	1100	<2	<2	2.1	<2	<2	0 33	30	8.2	0.26	<2	<2		<2	3.7		<2	<2	1.5
W-12	UG/L	3/4/2010	400	<0.50	<0.50	2.1		<0.50	<1.0	<10	1.5	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12	UG/L	5/12/2010	610	<0.50	<0.50	3.0		<0.50	<1.0	<10	2.1	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12	UG/L	8/5/2010	650	<0.50	<0.50	3.5	.4.0	<0.50	<1.0	<10	2.8	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-12 W-12	UG/L UG/L	11/4/2010 2/3/2011	530 310	<0.50 <0.50	<0.50 <0.50	1.4 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	1.7 1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-12	UG/L	4/19/2011	220	<0.50	<0.50	0.57	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2.1	<1.0	<1.0	<0.50	2.7
W-12	UG/L	8/25/2011	360	<0.50	<0.50	1.3	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	11/14/2011	63	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	1 2	<1.0	<1.0	<0.50	<1.0
W-12	UG/L	2/8/2012	400	<0.50	<0.50	2.2	<1.0	<0.50	<1.0	<10	1.6	<1.0	<1.0	<1.0	<10	<1.0	2 3	<1.0	<1.0	<0.50	2.2
W-12	UG/L	5/9/2012	450	<0.50	<0.50	0.59	<1.0	<0.50	<1.0	27	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<0.50	1.2
W-12	UG/L	8/30/2012	580	<0.50	<0.50	1.5	10	<0.50	<1.0	<10	20	1 2	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	2/12/2008	42	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	2.3		1.1	9		0.46	0.37	<5
W-14A	UG/L	1/13/2009	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-14A	UG/L	4/21/2009	54	<2	<2	<2	<2	<2	0.47	8.1	<5	<2	<2	1.3		0.86	8.7		0.44	0.4	<5
W-14A	UG/L	3/1/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.7		<1.0	<0.50	<1.0
W-14A W-14A	UG/L UG/L	5/10/2010 8/2/2010	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	1 9 3.4		<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-14A	UG/L	11/1/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	1/31/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	4/4/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	1.6	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	8/22/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.8	1.0	5 2	<1.0	<1.0	<0.50	<1.0
W-14A W-14A	UG/L UG/L	11/7/2011 1/30/2012	<50 200	<0.50 1.5	<0.50 <0.50	<0.50 38	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 1.1	<1.0 <1.0	<1.0 <1.0	<1 0 3.2	<1.0 <1.0	2 8	<1.0 1.4	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-14A W-14A	UG/L	5/1/2012	390	41	<0.50	9.5	13	2.7	2.9	<10	<1.0	1.1	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14A	UG/L	8/20/2012	1600	500	16	34	78	64	2.9	<10	110	57	20	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-14B	UG/L	2/12/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	0.72		<2	0.83		<2	<2	<5
W-14B W-14B	UG/L UG/L	1/13/2009 4/21/2009	170 65	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	8.4 19		<2 2.6	4 8 9.6		<2 2.2	<2 0.45	<5 <5
W-14B W-14B	UG/L UG/L	3/1/2010	99	<0.50	<0.50	<0.50	~2	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	5.6		<1.0	<0.50	<1.0
W-14B	UG/L	5/10/2010	99	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	1.2		1.1	6 2		<1.0	<0.50	<1.0
W-14B	UG/L	8/2/2010	55	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3.1		<1.0	<0.50	<1.0
W-14B	UG/L	11/1/2010	88	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	2.0	45	2.0	10	14	1.2	<0.50	<1.0
W-14B W-14B	UG/L UG/L	1/31/2011 4/4/2011	65 <50	<0.50 <0.50	<0.50 1.8	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 48	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 15	9.7 99	<1.0 2.8	2 0	3.1 34	<1.0 2.9	<0.50	<1.0 <1.0
W-14B W-14B	UG/L UG/L	8/22/2011	<50 200	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	28	130	2.8	98	53	3.2	0.53 0.98	<1.0
W-14B	UG/L	11/7/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	5.1	<1.0	<1.0	1.8	<1.0	<0.50	<1.0
W-14B	UG/L	1/30/2012	220	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	22	100	<1.0	12	55	3.1	<0.50	<1.0
W-14B	UG/L	5/1/2012	150	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	69	<1.0	<1.0	<1.0	8.0	82	<1.0	11	53	2.4	<0.50	<1.0
W-14B	UG/L	8/20/2012	180	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	56	<1.0	<1.0	<1.0	8.9	150	2.4	13	60	2.9	<0.50	<1.0
W-14C	UG/L	2/12/2008	260	1.2	<2	<2	<2	<2	<5	<50	<5	<2	<2	0 89		5.7	22		3.7	0.48	0.58
W-14C	UG/L	1/14/2009	120	2.5	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		8.8	34		3.4	<2	<5
W-14C	UG/L	4/21/2009	67	1.5	<2	<2	<2	<2	<5	10	<5	<2	<2	<2		4.5	23		2.1	<2	<5
W-14C	UG/L	3/1/2010	300	1.6	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		5.8	34		2.4	<0.50	<1.0
W-14C	UG/L	5/10/2010	120	0 58	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		2.0	13		<1.0	<0.50	<1.0
W-14C	UG/L	8/2/2010	77 <50	1.1	<0.50	<0.50	~1 O	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	~1 O	4.6	35	~1 O	2.4	<0.50	<1.0
W-14C	UG/L	11/1/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

Location	Unit	Date	TPH-g	В	T	E	m/p-X	о-Х	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-14C	UG/L	1/31/2011	60	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.8	1.1	9 9	3.0	<1.0	<0.50	<1.0
W-14C	UG/L	4/4/2011	<50	1.2	<0.50	<0.50	<1.0	<0.50	<1.0	27	<1.0	<1.0	<1.0	<1.0	24	3.9	30	16	3.1	<0.50	<1.0
W-14C	UG/L	8/22/2011	290	0.73	<0.50	<0.50	<1.0	<0.50	<1.0	22	<1.0	<1.0	<1.0	<1.0	21	2.3	26	12	2.2	<0.50	<1.0
W-14C W-14C	UG/L UG/L	11/7/2011 1/30/2012	<50 100	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	1.2 3.4	<1.0 <1.0	3 2 5 3	<1.0 2.2	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-14C	UG/L	5/1/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	38	<1.0	<1.0	<0.50	<1.0
W-14C	UG/L	8/20/2012	71	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	5 8	1.4	<1.0	<0.50	<1.0
W-15A	UG/L	2/11/2008	2700	620	4.9	5.1	11	<20	650	120	<50	<20	<20	<20		<20	<20		<20	<20	<50
W-15A	UG/L	1/14/2009	230	7.4	<2	<2	<2	<2	190	170	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15A W-15A	UG/L UG/L	4/24/2009	530	8.4	<4 <0.50	<4 <0.50	<4	<4 <0.50	220 44	94	<10 <1.0	<4 <1.0	<4	<4		<4 <1.0	<4		<4 <1.0	<4 <0.50	<10 <1.0
W-15A W-15A	UG/L	3/2/2010 5/10/2010	240 260	0 93 1.5	<0.50	<0.50		<0.50	85	<10	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0		<1.0	<1.0 <1.0		<1.0	<0.50	<1.0
W-15A	UG/L	8/2/2010	310	0 54	<0.50	<0.50		<0.50	71	180	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15A	UG/L	11/1/2010	61	<0.50	<0.50	<0.50	<1.0	<0.50	2.5	88	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	11/1/2010	74	0.66	<0.50	<0.50	10	<0.50	6.8	98	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A	UG/L	2/1/2011	14000	1400	610	400	1800	400	260	390	64	490	200	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.6	<1.0
W-15A	UG/L	4/5/2011	22000	<0.50	<0.50	<0.50	<1.0	<0.50	450	<10	150	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15A W-15A	UG/L UG/L	2/2/2012 5/2/2012	62000 2100000	4400 3900	2400 3600	2400 3900	9900 13000	2300 4400	930 940	<10 220	4.6 450	2900 6200	880 1800	<1.0 <10	<1 0 <10	<1.0 <10	<1.0 <10	<1.0 <10	<1.0 <10	<0.50 <5.0	<1.0 <10
W-15A W-15A	UG/L	8/21/2012	23000	540	370	590	3300	620	160	<250	190	1100	340	<25	<25	<25	<25	<25	<25	<12	<25
	, -																				
W-15B	UG/L	2/11/2008	<1600	900	<20	<20	7	<20	20	110	<50	<20	<20	<20		<20	<20		<20	<20	<50
W-15B	UG/L	1/14/2009	340	160	<2	<2	5	<2	20	110	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-15B W-15B	UG/L	4/24/2009	63	6.2 3.8	<2 <0.50	<2 <0.50	<2	<2 <0.50	5.8	98	<5	<2 <1.0	<2	<2		<2	<2		<2 <1.0	<2 <0.50	<5
W-15B W-15B	UG/L UG/L	3/2/2010 5/11/2010	220 230	3.8	<0.50	<0.50		<0.50	5.0 17	<10 36	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-15B W-15B	UG/L	8/3/2010	250	14	<0.50	<0.50		<0.50	19	67	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-15B	UG/L	11/2/2010	740	38	<0.50	<0.50	3 2	0.74	50	87	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	2/1/2011	120	7.0	1.7	0.55	4 0	1.4	22	21	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	4/5/2011	1500	<0.50	66	18	120	64	130	<10	6.3	16	16	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	8/23/2011	1400	120	40	17	110	30	260	210	<1.0	13	7.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B W-15B	UG/L UG/L	8/23/2011 11/10/2011	1100 250	110 17	34 5.4	15 2.8	100 17	29 3.9	200 55	220 <10	<1.0 <1.0	14 2.4	7.2 1.1	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-15B	UG/L	2/2/2012	280	35	14	4.4	31	18	100	80	<1.0	2.3	3.8	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	5/2/2012	780	27	2.6	3.1	18	6.3	200	160	<1.0	4.4	2.6	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15B	UG/L	8/20/2012	98	2.6	<0.50	<0.50	<1.0	0.52	110	87	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
													_			_			_		
W-15C	UG/L	2/11/2008	<50	0 94	0.57	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	1.1		0.45	0.35	0.34
W-15C W-15C	UG/L UG/L	1/15/2009 4/24/2009	29 43	1.1	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	27 25	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	5.7		1.2	0.86 <2	0.9 <5
W-15C	UG/L	3/2/2010	<50	<0.50	<0.50	<0.50	```	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.4		<1.0	<0.50	<1.0
W-15C	UG/L	5/11/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.6		<1.0	<0.50	<1.0
W-15C	UG/L	8/3/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	20	<1.0	<1.0	<1.0	<1.0		<1.0	4.7		1.0	0.54	1.5
W-15C	UG/L	11/2/2010	70	<0.50	<0.50	<0.50	<1.0	<0.50	2.9	<10	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	1.7	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	2/1/2011	94	1.6	0.85	<0.50	2 0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.8	<1.0	2.6	<1.0	<1.0	<0.50	<1.0
W-15C W-15C	UG/L UG/L	4/5/2011 8/23/2011	120 89	10 9.5	4.8 3.5	1.9 1.4	10 13	2.6 2.7	4.2 5.2	<10 <10	1.1 <1.0	<1.0 1 8	<1.0 <1.0	<1.0 <1.0	4.6 5.5	<1.0 <1.0	6.6 6.5	1.5 1.6	1.4 <1.0	<0.50 <0.50	1.8 <1.0
W-15C	UG/L	11/8/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	1/31/2012	53	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	4.9	<1.0	5 8	1.5	<1.0	<0.50	<1.0
W-15C	UG/L	5/2/2012	60	0.64	0.67	1.4	6.4	1.3	<1.0	<10	<1.0	3 2	1.2	<1.0	1.3	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
W-15C	UG/L	8/21/2012	140	4.1	1.7	0.92	5 9	1.4	1.7	10	2.9	15	<1.0	<1.0	3.7	<1.0	5 2	1.2	<1.0	<0.50	<1.0
W-16A	UG/L	11/9/2007	260	41	<0.36	<0.25	<0.6	<0.3	<0.32	30	<0.41	<0 23	<0.26	<0.32		<0.27	<0 32		2.6	<0.28	16
W-16A W-16A	UG/L	2/6/2008	310	40	<2	<2	<2	<2	<5	34	<5	<2	0.63	<2		0.88	<2		2.8	<2	14
W-16A	UG/L	1/21/2009	290	30	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		2.5	<2	7.2
W-16A	UG/L	4/27/2009	410	34	<2	<2	<2	<2	<5	20	<5	<2	0.27	<2		0.54	<2		1.8	<2	17
W-16A	UG/L	3/5/2010	220	4.2	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	2.9
W-16A	UG/L	5/14/2010	110	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16A W-16A	UG/L UG/L	8/9/2010 11/5/2010	120 90	0 93 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-16A W-16A	UG/L	2/7/2011	320	12	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	1.7	<0.50	1.1
W-16A	UG/L	4/18/2011	520	24	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	2.2	<0.50	2.2
W-16A	UG/L	8/26/2011	280	13	<0.50	<0.50	<1.0	<0.50	<1.0	30	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	1.2	<0.50	<1.0
W-16A	UG/L	11/8/2011	65	3.1	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-16A	UG/L	2/3/2012	230	16	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	1.1	<0.50	<1.0
W-16A W-16A	UG/L	5/3/2012	550	22	<0.50	1.0	4.4	1.1	<1.0	<10	<1.0	18	<1.0	<1.0	<10	<1.0	<1.0	<1.0	2.2	<0.50	<1.0
VV-10A	UG/L	8/22/2012	390	11	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
		I	l	1					i l				ı				i		1		ı

Location	Unit	Date	TPH-g	В	т	Е	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-16B	UG/L	11/9/2007	37	7.4	<0.36	<0.25	<0.6	<0.3	<0.32	9.1	0.8	0.26	<0.26	<0.32	162	8.7	6.6	1,1 501	<0.27	<0.28	<0.3
W-16B	UG/L	2/6/2008	400	48	<2	0.33	<2	<2	<5	9.9	1.9	0.4	<2	<2		43	27		<2	<2	<5
W-16B	UG/L	1/21/2009	73	16	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		15	9.7		<2	<2	<5
W-16B	UG/L	4/27/2009	47	0.9	<20	<20	<20	<20	<50	<500	<50	<20	<20	<20		9.4	6.1		<20	<20	<50
W-16B W-16B	UG/L UG/L	3/8/2010 5/14/2010	73 60	8.6 3.0	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		3.7 1.0	5 8 3 0		<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-16B	UG/L	8/9/2010	<50	1.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16B	UG/L	11/5/2010	110	23	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	9.4	13	<1.0	1.2	<0.50	<1.0
W-16B	UG/L	2/7/2011	290	80	<0.50	<0.50	<1.0	<0.50	<1.0	<10	18	<1.0	<1.0	<1.0	3.5	50	70	2.0	8.5	<0.50	2.9
W-16B	UG/L	4/18/2011	550	100	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	6.4	100	89	2.6	9.2	<0.50	10
W-16B W-16B	UG/L UG/L	8/26/2011 11/8/2011	89 <50	20 24	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 1.0	12	16 13	<1.0 <1.0	1.4 1.5	<0.50 <0.50	1.1 <1.0
W-16B	UG/L	2/3/2012	210	30	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.4	19 24	16	<1.0	1.3	<0.50	<1.0
W-16B	UG/L	5/3/2012	410	150	<0.50	0.58	2 0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	3.2	100	52	1.2	6.8	<0.50	23
W-16B	UG/L	8/22/2012	61	8.7	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	3.5	60	<1.0	<1.0	<0.50	<1.0
																					
W-16C	UG/L	11/9/2007	170	18	<0.36	<0.25	<0.6	<0.3	<0.32	13	<0.41	<0 23	<0.26	<0.32		12	40		11	<0.28	5.6
W-16C W-16C	UG/L UG/L	2/6/2008 1/21/2009	360 510	30 40	0.46 <2	<2 <2	<2 <2	<2 <2	<5 <5	21 <50	<5 <5	<2 <2	<2 <2	<2 <2		14 17	66 73		24 35	<2 <2	18 24
W-16C	UG/L	4/28/2009	170	20	<2	<2	<2	<2	<5	8.2	<5	<2	<2	<2		12	41		14	<2	8.2
W-16C	UG/L	3/8/2010	95	2.5	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		1.2	9.1		1.6	<0.50	<1.0
W-16C	UG/L	5/14/2010	63	1.3	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	3 8		1.2	<0.50	<1.0
W-16C	UG/L	8/9/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-16C W-16C	UG/L UG/L	8/9/2010 11/5/2010	<50 390	<0.50 14	<0.50 <0.50	<0.50 <0.50	<1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<10	<1.0 7.6	<1.0 30	1.4	<1.0 11	<0.50 <0.50	<1.0 9.6
W-16C W-16C	UG/L	2/7/2011	440	33	0.54	<0.50	<1.0	<0.50	<1.0	<10	6.9	<1.0	<1.0	<1.0	<10	15	68	3.3	22	<0.50	14
W-16C	UG/L	4/18/2011	510	39	0.51	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	1.2	20	80	4.7	32	<0.50	30
W-16C	UG/L	8/26/2011	320	30	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	15	63	2.8	24	<0.50	16
W-16C W-16C	UG/L UG/L	11/9/2011	270	24 23	<0.50 <0.50	<0.50 <0.50	<1.0	<0.50 <0.50	<1.0	<10 <10	<1.0	<1.0 <1.0	<1.0	<1.0	1.2	16	58 54	2.1	16 17	<0.50 <0.50	<1.0
W-16C W-16C	UG/L	2/3/2012 5/3/2012	250 380	14	<0.50	<0.50	<1.0 2 0	<0.50	<1.0 <1.0	<10	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	1.0 <1.0	16 10	32	<1.0	9.8	<0.50	<1.0 10
W-16C	UG/L	8/22/2012	520	22	<12	<12	<25	<12	<25	<250	<25	<25	<25	<25	<25	<25	42	<25	<25	<12	<25
W-17A	UG/L	2/14/2008	100	<2	<2	<2	<2	<2	<5	140	<5	<2	<2	<2		<2	6 2		0.47	1.4	0.7
W-17A W-17A	UG/L UG/L	1/16/2009 4/22/2009	78 180	<2 4.5	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	54 57	0.41 <5	0.33 <2	<2 <2	<2 <2		0.39 1.9	7.7		<2 0 51	<2 0.65	<5 <5
W-17A W-17A	UG/L	3/3/2010	51	<0.50	<0.50	<0.50	\Z	<0.50	<1.0	14	<1.0	<1.0	<1.0	<1.0		<1.0	1.6		<1.0	<0.50	<1.0
W-17A	UG/L	5/12/2010	110	1.1	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4 2		<1.0	<0.50	<1.0
W-17A	UG/L	8/4/2010	56	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	1.7		<1.0	<0.50	<1.0
W-17A	UG/L	11/3/2010	69	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	13	<1.0	<1.0	<0.50	<1.0
W-17A W-17A	UG/L UG/L	2/2/2011 4/20/2011	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 38	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	2 0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-17A W-17A	UG/L	8/24/2011	98	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2.5	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	11/9/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	9.6	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	2/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	17	<1.0	<1.0	<1.0	<1.0	<10	<1.0	15	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	5/4/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	3 8	<1.0	<1.0	<0.50	<1.0
W-17A	UG/L	8/23/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	12	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2 9	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	2/14/2008	39	<2	<2	<2	<2	<2	<5	30	<5	<2	<2	<2		<2	1.4		<2	<2	<5
W-17B	UG/L	1/16/2009	38	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-17B	UG/L	4/22/2009	<50	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	0.71		<2	<2	<5
W-17B W-17B	UG/L UG/L	3/3/2010 5/12/2010	<50 54	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-17B W-17B	UG/L UG/L	8/5/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17B	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	4/20/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	35	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	8/24/2011	<50	<0.50 <0.50	<0.50 <0.50	<0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10	<1.0	<1.0	<1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<0.50 <0.50	<1.0
W-17B W-17B	UG/L UG/L	11/9/2011 2/7/2012	<50 <50	<0.50 <0.50	<0.50	<0.50 <0.50	<1.0	<0.50	<1.0	<10 14	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<10	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<0.50	<1.0 <1.0
W-17B	UG/L	5/4/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17B	UG/L	8/23/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
14, 170	116.1	2/4//2000	25		.0	.0		.0		2-	_			.0			_		_	.0	
W-17C W-17C	UG/L UG/L	2/14/2008 1/16/2009	36 29	<2 <2	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	25 21	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	<2 1 2		<2 <2	<2 <2	<5 <5
W-17C W-17C	UG/L	4/23/2009	<50	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-17C	UG/L	3/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-17C	UG/L	5/12/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	_	<1.0	<0.50	<1.0
W-17C	UG/L	8/5/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	ТВА	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-17C	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C W-17C	UG/L UG/L	4/20/2011	<50	<0.50	<0.50 <0.50	<0.50	<1.0	<0.50 <0.50	<1.0 <1.0	31	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1 0 <1 0	<1.0	<1.0	<1.0 <1.0	<1.0	<0.50 <0.50	<1.0 <1.0
W-17C	UG/L	8/24/2011 11/9/2011	<50 <50	<0.50 <0.50	<0.50	<0.50 <0.50	<1.0 <1.0	<0.50	<1.0	<10 <10	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<10	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<0.50	<1.0
W-17C	UG/L	2/7/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	5/4/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	11	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-17C	UG/L	8/23/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-3A	UG/L	1/13/1998	4300000	150000	<6000	35000			<200000										_		
W-3A	UG/L	8/20/1998	1100	220	<25	33			440		350	<25	<25	<25		<25	<25		<25	<25	<50
W-3A W-3A	UG/L UG/L	1/28/1999 7/19/1999	690 5400	160 120	<50 <20	<50 <20			340 380		240 <200	<50 37	<50 <20	<50 <20		<50 <20	<50 <20		<50 <20	<50 <10	<100 <10
W-3A	UG/L	1/13/2000	14000	140	<10	<10			210		<100	<10	<10	<10		<10	<10		<10	<5	7
W-3A	UG/L	8/4/2000	3400	170	<20	8.4			220		<50	2	2	<2		<2	<20		<20	<1	5
W-3A	UG/L	2/8/2001	2700	34	<1	2.9			12		63	13	4.4	<1		<1	<1		<1	<05	1.7
W-3A	UG/L	7/26/2001	3400	42	<1	1.7			6.2		11	15	<1	<1		<1	<1		<1	<0.5	27
W-3A	UG/L	5/6/2002	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS		NS	NS		NS	NS	NS
W-3A W-3A	UG/L UG/L	9/25/2002 2/16/2006	NS 306	NS <1	NS <5	NS <5	<5	<5	NS 6.2	NS 16	NS <5	NS 18	NS 16	NS <5		NS <5	NS <5	1	NS <5	NS <5	NS <5
W-3A W-3A	UG/L UG/L	8/3/2006	39000	<2	<2	<2	<2	<2	9	<50	38	<2	<2	<2		<2	<2		<2	<2	<5 <5
W-3A	UG/L	11/9/2006	8100	<2	<2	<2	<2	<2	11	<50	37	6.4	9.5	<2		<2	<2	1	<2	<2	<5
W-3A	UG/L	2/8/2007	1400	<2	<2	<2	<2	<2	8.4	<50	30	3 9	6.1	<2		<2	<2		<2	<2	<5
W-3A	UG/L	5/10/2007	14000	0.66	<2	<2	<2	<2	7.8	23	16	2 3	3.6	<2		<2	<2		<2	<2	<5
W-3A	UG/L	8/9/2007	1900	0.79	<2	<2	<2	0.34	9.8	26	14	2	2.3	<2		<2	<2		<2	<2	<5
W-3A	UG/L	11/7/2007	1500	0.62	<0.36	<0.25	<0.6	<0.3	9.7	26	<0.41	0.64	0.67	<0.32		<0.27	<0 32	1	<0.27	<0.28	<0.3
W-3A	UG/L	2/7/2008	180	<2	<2	<2	<2	<2	10	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-4	UG/L	3/1/1990		120	<0.5	19								<0.5		<0.5	3 2	1	8.3	<0.5	<0.5
W-4	UG/L	4/1/1990		28	1.4	4.8								<1		<1	0.81		2.2	<1	4.3
W-4	UG/L	12/18/1996	420	80	<5	<5			<10		<5	<5	<5	<5		<5	<5		<5	<5	<10
W-4	UG/L	1/14/1998	920	120	<5	<5			<5		<10	<5	<5	<5		<5	<5		<5	<5	16
W-4	UG/L	8/20/1998	500	57	<5	<5			18		<10	<5	<5 .F	<5 .5		<5	<5 .5		<5	<5	9.8
W-4 W-4	UG/L UG/L	1/29/1999 7/19/1999	460 710	55 72	<5 <2	<5 <2			20 <2		<10 <20	<5 <2	<5 <2	<5 <2		<5 <2	<5 <2		<5 <2	<5 <1	11 <1
W-4	UG/L	1/13/2000	660	49	<1	<1			<1		<10	<1	<1	<1		<1	13		<1	<0.5	13
W-4	UG/L	8/3/2000	<500	47	<1	<1					<10	<1	<1	<1		1.2	<1		<1	<0.5	12
W-4	UG/L	2/8/2001	<500	42	<1	<1			<1		<10	<1	<1	<1		<1	<1		1.1	0.67	7
W-4	UG/L	7/26/2001	320	42	<1	<1			<1		<10	<1	<1	<1		<1	<1		1	<0.5	<0.5
W-4	UG/L	5/8/2002	250	33	<1	<1			<1	60000	<10	<1	<1	<1		2	<1		1.3	<0.5	5.2
W-4 W-4	UG/L	9/25/2002	290 350	62	<1	<1 1.9	0.66	40 F	<1 <5	45000	<1	<1	<1	<1		3.8	<1		2	<0.5	<0.5
W-4	UG/L UG/L	7/1/2004 10/6/2005	350	30 31	2.6 <1	1.9	0.66 <1	<0.5 <1	<1	<100 47	<5 <10	<5 <1	<5 <1	<5 <1		1J <1	3J 6.4		2J 1.7	<5 <0.5	1.3
W-4	UG/L	2/15/2006	501	43	<5	<5	<5	<5	<1	38	<5	<5	<5	<5		<5	2 8		2.5	<5	2.4
W-4	UG/L	8/3/2006	2800	3.5	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	4 5		<2	<2	<5
W-4	UG/L	11/9/2006	230	6.1	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	5.1		<2	<2	<5
W-4	UG/L	2/8/2007	200	3.1	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	4.7		<2	<2	<5
W-4	UG/L	5/10/2007 8/9/2007	170	1.5	<2	<2 <2	<2 <2	<2	1.6	30	<5 <5	<2 <2	<2	<2		<2 <2	38	1	<2 <2	<2	1
W-4 W-4	UG/L UG/L	11/7/2007	280 180	1.9	<2 <0.36	<0.25	<0.6	<2 <0.3	1.4	18 22	<0.41	<0 23	<2 <0.26	<2 <0.32		<0.27	3 2 3.6		0 36	<2 <0.28	0.59 <0.3
W-4	UG/L	2/7/2008	210	4.4	<2	<2	<2	<2	<5	55	<1	<2	<2	<2		<1	4.4	1	<2	<2	<5
W-4	UG/L	2/7/2008	250	3.9	<2	<2	<2	<2	<5	50	<5	<2	<2	<2		<2	4		<2	<2	<5
W-4	UG/L	1/19/2009	140	0 51	<2	<2	<2	<2	<5	47	0.43	<2	<2	<2		<2	7.6		1	<2	1.8
W-4	UG/L	4/27/2009	92	<2	<2	<2	<2	<2	<5	34	<5	<2	<2	<2		<2	7 3	ļ	0.61	<2	1.9
W-4 W-4	UG/L	3/5/2010	700	1.5 4.3	<0.50 <0.50	<0.50 <0.50		<0.50 <0.50	<1.0	<10	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0		<1.0 <1.0	3.7	 	<1.0 <1.0	<0.50 <0.50	7.4
W-4 W-4	UG/L UG/L	5/13/2010 8/6/2010	700 570	68	<0.50	<0.50		<0.50	<1.0 <1.0	<10 <10	<1.0	<1.0 <1.0	<1.0	<1.0		<1.0	3.1 4 0	1	<1.0	<0.50	5.4 7.2
W-4	UG/L	11/4/2010	980	180	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	4.8
W-4	UG/L	2/8/2011	1800	480	<0.50	1.2	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	10	<1.0	<1.0	<0.50	8.6
W-4	UG/L	4/14/2011	1400	460	0.59	1.2	<1.0	<0.50	1.1	38	<1.0	<1.0	<1.0	<1.0	<10	<1.0	1 2	<1.0	<1.0	<0.50	11
W-4	UG/L	8/25/2011	840	190	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	1.8
W-4	UG/L	11/14/2011	1200	390	<2.5	0.76	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-4 W-4	UG/L UG/L	2/6/2012 5/7/2012	910	410 140	<0.50 <0.50	0.79 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 21	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	6.2 4.1
W-4 W-4	UG/L UG/L	8/27/2012	910	<0.50	<0.50	<0.50	<1.0	<0.50	1.9	21	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0 <1.0	<0.50	2.8
** -	55/2	0,2,,2012	310	10.50	10.50	10.50	11.0	10.50	1.5		11.0	11.0	11.0	-1.0	110	11.0	11.0	1.0	12.0	10.50	2.0
W-7	UG/L	8/4/2000	<500	<0.5	<1	<1			<1		<1	<1	<1	<1		<1	<0.5		1.2	<1	<0.5
W-7	UG/L	2/8/2001	<500	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	UG/L	7/26/2001	<100	<0.5	<1	<1			<1		<10	<1	<1	<1		<1	<1	<u>l</u>	<1	<0.5	<0.5

Location	Unit	Date	TPH-g	В	Т	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-7	UG/L	5/7/2002	<100	<0.5	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	UG/L	9/24/2002	<100	<0.5	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7 W-7	UG/L	10/7/2005	<100	<0.5	<1	<1	<1	<1	<1	<10	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-7	UG/L UG/L	2/16/2006 8/4/2006	60.9 <50	<1 <2	<5 <2	<5 <2	<5 <2	<5 <2	<1 <5	<10 <50	<5 <5	1.1 <2	<5 <2	<5 <2		<5 <2	<5 <2		<5 <2	<5 <2	<5 <5
W-7	UG/L	11/10/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	UG/L	2/9/2007	<50	<2	<2	<2	2.6	<2	<5	<50	<5	2 2	<2	<2		<2	<2		<2	<2	<5
W-7	UG/L	5/8/2007	31	0.41	0.45	0.87	1.4	0.75	<5	<50	0.9	1.4	0.35	<2		<2	<2		0.41	<2	<5
W-7	UG/L	8/10/2007	<50	<2	<2	0.25	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7	UG/L	11/6/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	<4 9	<0.41	<0 23	<0.26	<0.32		<0.27	<0 32		<0.27	<0.28	<0.3
W-7	UG/L	2/4/2008	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-7 W-7	UG/L UG/L	1/13/2009 4/21/2009	<50 <50	<2 0 31	<2 <2	<2 <2	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	<2 <2		<2 1.7	<2 <2	<5 <5
W-7	UG/L	3/4/2010	65	<0.50	<0.50	<0.50	\Z	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.0	<0.50	<1.0
W-7	UG/L	5/17/2010	60	<0.50	<0.50	<0.50		0.51	<1.0	<10	2.3	<1.0	<1.0	<1.0		<1.0	<1.0		1.9	<0.50	<1.0
W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.6	<0.50	<1.0
W-7	UG/L	8/4/2010	<50	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		2.6	<0.50	<1.0
W-7	UG/L	11/3/2010	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	2.5	<0.50	<1.0
W-7	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<0.50	<1.0
W-7 W-7	UG/L UG/L	4/14/2011 8/24/2011	<50 <50	0 57 0 52	0.55 0.50	0.51 0.53	<1.0 <1.0	0.57 0.53	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	2.8 1.8	<0.50 <0.50	<1.0 <1.0
W-7	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	0.51	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	1.8	<0.50	<1.0
W-7	UG/L	11/10/2011	<50	<0.50	<0.50	0.56	<1.0	0.61	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	1.8	<0.50	<1.0
W-7	UG/L	2/8/2012	<50	<0.50	<0.50	0.57	<1.0	0.59	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	1.6	<0.50	<1.0
W-7	UG/L	5/9/2012	57	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	1.6	<0.50	<1.0
W-7	UG/L	8/29/2012	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	8/4/2000	<500	2.8	<4.6	<1			<1		<1	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-8	UG/L	2/6/2001	NS	NS NS	NS NS	NS			NS		NS	NS	NS	NS		NS	NS		NS	NS	NS NS
W-8	UG/L	7/26/2001	180	0.67	<1	<1			<1		<1	<1	<1	<1		<1	<1		<1	<5	<0.5
W-8	UG/L	5/7/2002	180	0 51	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<5	<0.5
W-8	UG/L	9/24/2002	<100	0.64	<1	<1			<1	<10000	<10	<1	<1	<1		<1	<1		<1	<5	<0.5
W-8	UG/L	7/1/2004	390	1.9J	1.8	0.72	0.92	<0.5	<5	<100	<5	<5	<5	<5		<5	<5		<5	<5	<5
W-8	UG/L	10/6/2005	220	0 52	<1	<1	<1	<1	<1	<10	<10	<1	<1	<1		<1	<1		<1	<0.5	<0.5
W-8 W-8	UG/L UG/L	2/16/2006 8/4/2006	192 130	<1 <2	<5 <2	<5 <2	<5 <2	<5 <2	<1 <5	<10 <50	<5 <5	<5 <2	<5 <2	<5 <2		<5 <2	<5 <2		<5 <2	<5 <2	<5 <5
W-8	UG/L	11/10/2006	210	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	UG/L	2/9/2007	130	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-8	UG/L	5/8/2007	110	0.49	0.73	0.33	<2	<2	<5	<50	<5	0.23	<2	<2		<2	<2		<2	<2	<5
W-8	UG/L	8/7/2007	170	0.49	0.82	0.44	<2	0.38	<5	<50	<5	0 3	<2	<2		<2	<2		<2	<2	<5
W-8	UG/L	11/6/2007	160	0 52	0.75	0.4	<0.6	0.3	<0.32	7.5	<0.41	<0 23	<0.26	<0.32		<0.27	<0 32		<0.27	<0.28	<0.3
W-8	UG/L	2/4/2008	160	0.46	0.81	0.39	<2	<2	<5	<50	<5	0.25	<2	<2		<2	<2		<2	<2	<5
W-8 W-8	UG/L UG/L	1/13/2009 4/21/2009	120 150	<2 0.45	<2 0.82	<2 0.37	<2 <2	<2 <2	<5 <5	<50 <50	<5 <5	<2 <2	<2 <2	<2 <2		<2 <2	<2 <2		<2 <2	<2 <2	<5 <5
W-8	UG/L	3/4/2010	220	<0.50	0.85	<0.50	12	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	5/17/2010	200	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	5/17/2010	210	<0.50	0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	8/4/2010	110	<0.50	0.80	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	·	<1.0	<1.0		<1.0	<0.50	<1.0
W-8	UG/L	11/4/2010	140	<0.50	0.60	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8 W-8	UG/L UG/L	2/7/2011 4/21/2011	130 130	<0.50 0.57	0.85 1.1	<0.50 <0.50	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0	<10 <10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1 0 <1 0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.50 <0.50	<1.0 <1.0
W-8	UG/L UG/L	4/21/2011	140	0.57	1.1	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	9/1/2011	2000	0 57	0.77	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	11/10/2011	110	<0.50	0.64	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	2/7/2012	90	<0.50	0.73	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	5/10/2012	180	<0.50	0.87	<0.50	<1.0	<0.50	<1.0	<10	2.9	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-8	UG/L	8/29/2012	190	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	11/7/2006	<50	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	UG/L	2/6/2007	67	<2	<2	<2	<2	<2	<5	<50	<5	<2	<2	<2		<2	<2		<2	<2	<5
W-9	UG/L	5/9/2007	50	<2	<2	<2	<2	<2	<5	17	<5	<2	<2	<2		<2	2		<2	<2	<5
W-9	UG/L	8/7/2007	38	<2	<2	<2	<2	<2	<5	22	<5	<2	<2	<2		0.31	3		<2	<2	<5
W-9	UG/L	11/6/2007	<30	<0.28	<0.36	<0.25	<0.6	<0.3	<0.32	19	<0.41	<0 23	<0.26	<0.32		0.31	3 8		<0.27	<0.28	<0.3
W-9	UG/L	2/5/2008	<50	<2	<2	<2	<2	<2	<5 -	23	0.5	<2	<2	<2		0.3	3.4		<2	<2	<5
W-9	UG/L	1/15/2009	46	<2	<2	<2	<2	<2	<5	18	<5	<2	<2	<2		<2	3 2		<2	<2	<5
W-9 W-9	UG/L UG/L	4/23/2009 3/3/2010	36 <50	<2 <0.50	<2 <0.50	<2 <0.50	<2	<2 <0.50	<5 <1.0	18 <10	<5 <1.0	<2 <1.0	<2 <1.0	<2 <1.0		<2 <1.0	2.6 1.9		<2 <1.0	<2 <0.50	<5 <1.0
W-9	UG/L	5/12/2010	80	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	2.8		<1.0	<0.50	<1.0
W-9	UG/L	8/4/2010	67	<0.50	<0.50	<0.50		<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0		<1.0	4 0		<1.0	<0.50	<1.0
		· · · · · · · · · · · · · · · · · · ·	•				•					•					•				

Table III

Summary of Total Petroleum Hydrocarbon (TPH) and VOC Results Former Powerine Refinery Santa Fe Springs, CA

3Q2012

Location	Unit	Date	TPH-g	В	T	E	m/p-X	o-X	MTBE	TBA	NAP	1,2,4-TMB	1,3,5-TMB	PCE	TCE	t1,2-DCE	c1,2-DCE	1,1-DCE	1,1-DCA	1,2-DCA	VC
W-9	UG/L	11/3/2010	87	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	3 2	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	2/2/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	15	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	4/14/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	5 9	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	8/24/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2.4	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	11/10/2011	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2.1	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	2/8/2012	59	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	13	<1.0	<1.0	<1.0	<1.0	<10	<1.0	18	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	5/9/2012	89	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	29	<1.0	<1.0	<1.0	<1.0	<10	<1.0	2 3	<1.0	<1.0	<0.50	<1.0
W-9	UG/L	8/28/2012	70	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0

NOTES: PCE - Tetrachloroethylene

TCE - Trichloroethylene

c1,2-DCE - cis-1,2-Dichloroethene

t1,2-DCE - trans-1,2-Dichloroethene

1,1-DCE - 1,1-Dichloroethene

1,2-DCA - 1,2-Dichloroethane

1,3,5-TMB - 1,3,5-Trimethylbenzene

1,2,4-TMB - 1,2,4-Trimethylbenzene

VC - Vinyl Chloride

B- Benzene

T - Toluene

E - Ethylbenzene X - Xylenes, total

nBUT - n-Butylbenzene

sBUT - sec-Butylbenzene tBUT - tert-Butylbenzene

nPRO - n-Propylbenzene

1,1 DCA - 1,1-Dichloroethane

ISO-P - Isopropylbenzene MC - Methylene Chloride

NAP - Naphthalene

TRIM - Trichlorofluoromethane

PMXY - p/m-Xylenes

OXYL -o-Xylene

DIPE - Diisopropyl Ether (DIPE)

MTBE - Methyl-tert-Butyl Ether (MTBE)

TBA - tert-Butyl Alcohol (TBA)

ND - Not Detected above laboratory detection limits

UG/L - Micrograms per litre

NA - Information not available

Table IV Summary of Field Test Parameters Former Powerine Refinery Santa Fe Springs, California 3Q2012

W. II IB		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-104A	12/18/2009	7.31	5.31	3
MW-104A	3/3/2010	6.93	1.65	66
MW-104A	5/11/2010	8.06	NA	19
MW-104A	8/4/2010	7.65	2.32	205
MW-104A	11/3/2010	8.06	2.00	131
MW-104A	2/2/2011	8.46	3.05	136.4
MW-104A	4/14/2011	8.10	2.85	128.5
MW-104A	8/24/2011	7.53	4.47	19.6
MW-104A	11/10/2011	7.38	5.47	67
MW-104A	2/9/2012	8.79	2.42	-14.5
MW-104A	5/9/2012	8.18	4.36	-39.3
MW-104A	8/27/2012	7.69	1.96	51.9
MW-106A	12/17/2009	7.25	7.29	-112
MW-106A	3/5/2010	6.73	4.71	116
MW-106A	5/13/2010	8.06	7.90	-38
MW-106A	8/6/2010	8.05	4.52	210
MW-106A	11/4/2010	8.23	3.09	77
MW-106A	2/3/2011	NA	NA	NA
MW-106A	4/19/2011	NA	NA	NA
MW-106A	8/25/2011	7.67	2.98	-28.1
MW-106A	11/14/2011	7.03	4.74	33
MW-106A	2/3/2012	NA	NA	NA
MW-106A	8/24/2012	NA	NA	NA
MW-107A	12/17/2009	7.20	6.99	-276
MW-107A	3/5/2010	8.70	1.81	-307
MW-107A	5/13/2010	8.30	NA	-370
MW-107A	8/6/2010	8.10	3.25	-280
MW-107A	11/4/2010	8.16	2.04	-245
MW-107A	2/3/2011	8.49	3.42	-338
MW-107A	4/19/2011	8.02	1.93	-276.8
MW-107A	8/25/2011	7.82	2.68	-216.7
MW-107A	11/14/2011	7.19	3.73	-161.3
MW-107A	1/31/2012	8.88	2.6	-240
MW-107A	5/8/2012	8.40	2.34	-273.6
MW-107A	8/24/2012	8.12	2.89	-226.7
MW-503B	12/15/2009	6.92	7.78	-137
MW-503B	3/8/2010	7.33	3.38	-96
MW-503B	5/17/2010	8.18	1.79	-69
MW-503B	8/9/2010	7.60	2.72	147

Table IV Summary of Field Test Parameters Former Powerine Refinery Santa Fe Springs, California 3Q2012

W. II IB		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-503B	11/8/2010	7.62	2.93	7
MW-503B	2/4/2011	7.96	2.16	-46
MW-503B	4/15/2011	7.61	1.74	-46.4
MW-503B	8/29/2011	7.50	2.57	-96.1
MW-503B	11/16/2011	6.76	3.01	-41.3
MW-503B	1/31/2012	8.50	3.06	-150.6
MW-503B	5/8/2012	7.73	2.46	-145.0
MW-503B	8/30/2012	8.05	2.50	-13.0
W-1	12/15/2009	7.62	7.10	-39
W-1	3/5/2010	7.51	3.15	-111
W-1	5/13/2010	8.07	2.02	-197
W-1	8/6/2010	7.52	3.22	-22
W-1	11/5/2010	8.13	2.75	38
W-1	2/4/2011	8.18	4.84	-63.7
W-1	4/14/2011	7.65	1.94	37.3
W-1	8/26/2011	7.47	3.16	-86
W-1	11/14/2011	7.08	2.9	-75.9
W-1	2/6/2012	7.99	2.87	-79.4
W-1	5/7/2012	7.85	3.03	-62.4
W-1	8/27/2012	7.90	2.69	-60.4
W-4	12/15/2009	8.27	9.40	21
W-4	3/5/2010	7.09	3.41	-101
W-4	5/13/2010	8.00	3.87	-66
W-4	8/6/2010	7.74	3.48	16
W-4	11/4/2010	7.75	3.50	45
W-4	2/8/2011	7.67	5.53	-3.5
W-4	4/14/2011	7.79	4.47	107.8
W-4	8/25/2011	7.54	4.75	-92.5
W-4	11/14/2011	6.88	4.49	-47.3
W-4	2/6/2012	8.36	3.7	-53.2
W-4	5/7/2012	8.10	3.24	-54
W-4	8/27/2012	8.08	3.84	11.7
W-8	12/18/2009	10.11	7.07	-230
W-9	3/3/2010	7.53	5.66	69
W-9	5/12/2010	8.07	7.15	-175
W-9	8/4/2010	7.36	3.36	-60
W-9	4/5/2011	7.71	4.07	82.3
W-9	8/24/2011	7.62	4.9	-4.9
W-9	11/10/2011	NA	NA	NA

W. II IB		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-9	2/8/2012	8.32	3.95	61.8
W-9	5/9/2012	7.77	3.69	-49.5
W-9	8/28/2012	7.70	2.61	36.6
W-10	12/18/2009	7.21	6.89	-97
W-10	3/8/2010	NA	NA	NA
W-10	5/17/2010	NA	NA	NA
W-10	8/9/2010	NA	NA	NA
W-10	11/3/2010	7.53	3.39	-10
W-10	11/8/2010	NA	NA	NA
W-10	2/2/2011	7.83	3.57	41.6
W-10	2/8/2011	7.28	5.51	-103
W-10	4/15/2011	NA	NA	NA
W-10	8/29/2011	7.14	2.7	-130.2
W-10	11/10/2011	NA	NA	NA
W-10	2/8/2012	NA	NA	NA
W-10	5/10/2012	NA	NA	NA
W-10	8/28/2012	NA	NA	NA
W-11	12/8/2010	NA	NA	NA
W-11	2/4/2011	7.67	5.62	-119
W-11	4/15/2011	7.58	1.68	-77
W-11	8/29/2011	7.35	2.2	-125.7
W-11	11/14/2011	6.93	2.63	-148.6
W-11	2/8/2012	8.38	3.3	45.6
W-11	5/10/2012	7.84	2.75	-76.5
W-11	8/28/2012	7.50	1.56	-122.5
W-12	12/18/2009	6.99	6.96	0
W-12	3/4/2010	7.53	3.15	-63
W-12	5/12/2010	7.87	NA	-180
W-12	8/5/2010	7.61	2.65	-100
W-12	11/4/2010	7.88	2.64	7
W-12	2/3/2011	8.28	2.85	-99
W-12	4/19/2011	7.77	2.10	15.2
W-12	8/25/2011	7.50	2.78	-58.5
W-12	11/14/2011	6.93	3.77	-34.7
W-12	2/8/2012	8.13	2.57	-113
W-12	5/9/2012	7.89	3.22	-74.5
W-12	8/30/2012	7.63	2.15	-98.7
W-14A	12/15/2009	7.65	7.76	-23
W-14A	3/1/2010	6.61	4.09	58

W. II IB		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-14A	5/10/2010	8.63	2.74	2
W-14A	8/2/2010	8.02	3.12	145
W-14A	11/1/2010	8.30	2.87	46
W-14A	1/31/2011	8.30	13.16	185.4
W-14A	4/4/2011	8.29	4.81	89.6
W-14A	8/22/2011	7.87	10.15	22.8
W-14A	11/7/2011	7.40	5.23	151.6
W-14A	1/30/2012	8.06	1.48	2.6
W-14A	8/20/2012	8.10	3.44	-76.9
W-14B	12/15/2009	8.37	7.79	97
W-14B	3/1/2010	7.72	2.60	-5
W-14B	5/10/2010	8.43	3.00	-172
W-14B	8/2/2010	7.80	4.60	33
W-14B	11/1/2010	8.13	3.37	37
W-14B	1/31/2011	8.17	19.82	194
W-14B	4/4/2011	8.27	5.95	82.6
W-14B	8/22/2011	7.95	7.90	22.7
W-14B	11/7/2011	7.22	4.92	67.8
W-14B	1/30/2012	8.70	2.90	-133.7
W-14B	8/20/2012	8.27	4.00	-30.3
W-14C	12/15/2009	8.24	8.57	77
W-14C	3/1/2010	7.22	2.43	188
W-14C	5/10/2010	8.17	0.80	-77
W-14C	8/2/2010	7.60	3.55	128
W-14C	11/1/2010	7.89	3.15	49
W-14C	1/31/2011	7.88	10.85	188
W-14C	4/4/2011	7.98	3.27	51.3
W-14C	8/22/2011	7.76	4.24	-3.7
W-14C	11/7/2011	7.33	7.47	59.2
W-14C	1/30/2012	8.75	3.65	-65.2
W-14C	5/1/2012	8.18	4.07	41.5
W-14C	8/20/2012	8.18	4.95	5.1
W-15A	12/14/2009	7.31	9.15	85
W-15A	3/2/2010	7.12	2.67	202
W-15A	5/10/2010	7.90	NA	-228
W-15A	8/2/2010	7.39	1.96	-145
W-15A	11/1/2010	7.67	2.85	32
W-15A	2/1/2011	7.89	2.05	-33
W-15A	4/5/2011	8.00	2.60	-81.7

II 15		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-15A	8/23/2011	7.47	4.96	-148.7
W-15A	11/8/2011	(FPPH)	(FPPH)	(FPPH)
W-15A	2/2/2012	(FPPH)	(FPPH)	(FPPH)
W-15A	5/2/2012	8.06	3.26	-26.4
W-15A	8/21/2012	(FPPH)	(FPPH)	(FPPH)
W-15B	12/14/2009	7.39	7.44	-58
W-15B	3/2/2010	7.61	2.39	94
W-15B	5/11/2010	8.09	4.36	-15
W-15B	8/3/2010	7.74	3.42	107
W-15B	11/2/2010	8.06	3.18	40
W-15B	2/1/2011	8.15	4.58	286
W-15B	4/5/2011	8.10	2.92	62.4
W-15B	8/23/2011	7.56	3.85	-2.1
W-15B	11/10/2011	7.10	3.07	28.3
W-15B	2/2/2012	8.17	2.31	-69.2
W-15B	5/2/2012	8.00	3.41	-11
W-15B	8/20/2012	8.10	5.08	64.6
W-15C	12/14/2009	7.16	7.18	-53
W-15C	3/2/2010	7.33	2.27	148
W-15C	5/11/2010	8.16	4.73	-21
W-15C	8/3/2010	7.60	2.72	108
W-15C	11/2/2010	7.55	2.40	62
W-15C	2/1/2011	7.81	4.58	123.7
W-15C	4/5/2011	7.92	2.85	109
W-15C	8/23/2011	7.54	4.32	-2.4
W-15C	11/8/2011	7.32	6.00	119.4
W-15C	1/31/2012	8.72	3.11	-60.3
W-15C	5/2/2012	8.00	3.50	6
W-15C	8/21/2012	8.12	2.90	125.7
W-16A	12/16/2009	7.62	6.90	-62
W-16A	3/5/2010	7.03	3.47	-5
W-16A	5/14/2010	8.28	2.23	-54
W-16A	8/9/2010	7.98	2.65	106
W-16A	11/5/2010	8.03	6.15	48
W-16A	2/7/2011	7.82	4.09	249
W-16A	4/18/2011	7.88	4.00	94.9
W-16A	8/26/2011	7.73	4.11	-73.4
W-16A	11/8/2011	7.07	4.36	77.6
W-16A	2/3/2012	8.49	3.67	-70.0

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
W-16A	5/3/2012	7.86	4.09	50.0
W-16A	8/22/2012	7.77	2.47	-77.5
W-16B	12/16/2009	8.23	7.61	-184
W-16B	3/8/2010	8.15	3.20	-236
W-16B	5/14/2010	8.62	0.77	-310
W-16B	8/9/2010	8.01	2.88	-217
W-16B	11/5/2010	8.30	2.68	-119
W-16B	2/7/2011	8.12	3.54	-297
W-16B	4/18/2011	8.47	2.56	-247
W-16B	8/26/2011	8.01	2.72	-217.4
W-16B	11/8/2011	6.89	8.68	-63.8
W-16B	2/3/2012	9.21	2.55	-206.7
W-16B	5/3/2012	8.74	3.06	-194.3
W-16B	8/22/2012	8.62	2.90	-200.0
W-16C	12/16/2009	8.15	7.12	-206
W-16C	3/8/2010	8.33	3.64	-237
W-16C	5/14/2010	8.68	NA	-295
W-16C	8/9/2010	8.02	2.57	-165
W-16C	11/5/2010	8.24	2.37	-72
W-16C	2/7/2011	8.03	4.34	-285
W-16C	4/18/2011	8.55	2.88	-249.5
W-16C	8/26/2011	7.81	2.71	-223.2
W-16C	11/9/2011	7.57	6.94	-185
W-16C	2/3/2012	8.84	2.51	-253.2
W-16C	5/3/2012	8.52	3.00	-205.8
W-16C	8/22/2012	8.30	2.60	-138.7
W-17A	12/18/2009	8.02	7.10	30
W-17A	3/3/2010	6.67	5.41	74
W-17A	5/12/2010	8.25	0.88	-40
W-17A	8/4/2010	7.78	2.35	62
W-17A	11/3/2010	8.17	2.95	76
W-17A	2/2/2011	8.36	5.96	349
W-17A	4/20/2011	7.85	3.51	-5.8
W-17A	8/24/2011	7.85	3.23	2.6
W-17A	11/9/2011	7.19	4.78	-13
W-17A	2/7/2012	8.46	2.87	-20
W-17A	5/4/2012	8.20	3.45	-43.8
W-17A	8/23/2012	8.12	2.36	20.5
W-17B	12/18/2009	8.49	7.18	-173

Well ID		рН	DO	ORP
weilib	Sample Date	(SU)	(mg/L)	(mV)
W-17B	3/3/2010	7.87	4.80	-197
W-17B	5/12/2010	8.35	NA	-313
W-17B	8/5/2010	7.96	2.31	-189
W-17B	11/3/2010	8.09	2.56	-25
W-17B	2/2/2011	8.43	3.45	-269
W-17B	4/20/2011	8.11	3.32	-168.5
W-17B	8/24/2011	7.88	3.41	-153.7
W-17B	11/9/2011	7.52	2.94	-136.4
W-17B	2/7/2012	8.65	2.50	-174.3
W-17B	5/4/2012	8.40	2.87	-118.7
W-17B	8/23/2012	8.25	2.13	-156.5
W-17C	12/18/2009	8.79	8.74	-177
W-17C	3/4/2010	7.96	5.90	-209
W-17C	5/12/2010	8.49	3.03	-322
W-17C	8/5/2010	8.01	2.64	-167
W-17C	11/3/2010	8.16	2.79	-120
W-17C	2/2/2011	8.47	3.96	-301
W-17C	4/20/2011	8.26	2.08	-223.7
W-17C	8/24/2011	7.94	3.12	-201.7
W-17C	11/9/2011	7.43	3.36	-159.7
W-17C	2/7/2012	8.80	2.73	-226.4
W-17C	5/4/2012	8.50	2.56	-168.5
W-17C	8/23/2012	8.39	2.39	-177.5
EW-1	2/3/2011	7.90	6.61	-258
EW-1	4/13/2011	8.15	2.86	-210
EW-1	8/29/2011	7.62	2.74	-293
EW-1	11/16/2011	(FPPH)	(FPPH)	(FPPH)
EW-1	2/6/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	5/7/2012	(FPPH)	(FPPH)	(FPPH)
EW-1	8/24/2012	(FPPH)	(FPPH)	(FPPH)
MW-701	2/4/2011	6.09	NA	NA
MW-701	4/11/2011	7.60	3.67	180.6
MW-701	8/30/2011	7.50	3.98	-31.2
MW-701	11/16/2011	6.90	2.93	25.9
MW-701	2/1/2012	8.18	4.3	-58.5
MW-701	5/11/2012	7.89	3.45	-8.8
MW-701	8/31/2012	7.97	4.00	28.7
MW-702	2/4/2011	6.04	NA	NA
MW-702	4/12/2011	7.70	3.29	103.1

Wall ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-702	8/30/2011	7.34	3.23	-155.3
MW-702	11/16/2011	7.07	2.67	-172.7
MW-702	2/9/2012	7.89	4.73	-60.7
MW-702	5/11/2012	7.77	3.14	-99.9
MW-702	8/31/2012	7.76	3.48	-92.8
MW-703	2/4/2011	6.25	NA	NA
MW-703	4/12/2011	7.57	3.53	132.4
MW-703	8/30/2011	7.30	4.2	-87.1
MW-703	11/17/2011	6.92	2.77	-98
MW-703	2/14/2012	8.11	4.07	-26.3
MW-703	5/11/2012	7.85	3.13	-72.6
MW-703	8/31/2012	7.68	3.20	-21.3
MW-704	2/9/2011	6.08	NA	NA
MW-704	4/13/2011	7.46	4.60	134.6
MW-704	8/31/2011	7.40	4.02	99.4
MW-704	11/17/2011	6.93	2.51	-148.8
MW-704	2/14/2012	7.80	4.2	-31.6
MW-704	5/14/2012	7.60	5.25	-30.0
MW-704	9/4/2012	7.87	2.85	31.7
MW-705	2/4/2011	6.01	NA	NA
MW-705	4/12/2011	7.79	3.40	127.6
MW-705	8/31/2011	7.78	3.7	-55.5
MW-705	11/17/2011	7.04	3.16	-130.7
MW-705	2/14/2012	8.12	4.09	-57.6
MW-705	5/14/2012	7.88	2.50	-65.0
MW-705	9/4/2012	7.80	3.47	-28.4
MW-706	2/4/2011	6.21	NA	NA
MW-706	4/11/2011	7.99	4.02	158.7
MW-706	8/31/2011	7.76	3.03	-41.2
MW-706	11/18/2011	6.93	3.06	180.8
MW-706	2/14/2012	8.16	3.00	-52.7
MW-706	5/14/2012	7.87	2.77	-63.5
MW-706	9/4/2012	7.84	3.24	18.2
MW-707	2/4/2011	6.22	NA	NA
MW-707	4/8/2011	7.89	3.24	51.9
MW-707	9/1/2011	7.30	3.73	-9.4
MW-707	11/18/2011	6.89	2.8	11.3
MW-707	2/1/2012	8.19	3.1	-147
MW-707	5/15/2012	7.75	2.50	-72.6

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-707	9/4/2012	7.55	3.26	-44.5
MW-708	2/4/2011	5.99	NA	NA
MW-708	4/6/2011	7.84	3.03	-119.8
MW-708	9/1/2011	7.51	3.45	-147.2
MW-708	11/18/2011	7.00	3.56	-161.3
MW-708	2/10/2012	8.09	2.75	-140.2
MW-708	5/15/2012	7.79	2.36	-136.1
MW-708	9/5/2012	7.78	2.39	-113.1
MW-709	2/4/2011	6.27	NA	NA
MW-709	4/6/2011	8.08	3.74	149.6
MW-709	9/1/2011	7.38	2.97	-37
MW-709	11/21/2011	6.76	2.97	148.5
MW-709	2/10/2012	8.08	2.61	-57.1
MW-709	5/16/2012	7.70	3.12	9.3
MW-709	9/5/2012	7.82	2.07	-113.1
MW-710	2/8/2011	6.18	NA	NA
MW-710	4/7/2011	7.88	3.54	97.7
MW-710	9/2/2011	6.87	3.68	-10.2
MW-710	11/21/2011	6.81	2.86	255.6
MW-710	2/1/2012	8.47	3.45	-64.8
MW-710	5/16/2012	7.80	4.04	21.5
MW-710	9/5/2012	7.85	2.32	30.5
MW-711	2/8/2011	5.99	NA	NA
MW-711	4/6/2011	7.91	3.39	-59.2
MW-711	9/2/2011	7.06	3.54	-99.8
MW-711	11/21/2011	6.87	2.95	-133.6
MW-711	2/10/2012	8.04	3.45	-96.7
MW-711	5/16/2012	7.73	2.37	-73.0
MW-711	9/5/2012	7.76	2.04	-175.4
MW-712	2/7/2011	6.03	NA	NA
MW-712	4/7/2011	7.74	3.08	21.7
MW-712	9/2/2011	7.10	2.68	-59.7
MW-712	11/21/2011	6.90	2.65	-90.4
MW-712	2/13/2012	7.90	3.88	-83.5
MW-712	5/17/2012	7.71	2.80	-13.3
MW-712	9/6/2012	7.68	1.87	-42.0
MW-713	2/7/2011	6.13	NA	NA
MW-713	4/8/2011	7.95	3.84	99.5
MW-713	9/2/2011	7.20	3.13	-51.4

Well ID		рН	DO	ORP
Well ID	Sample Date	(SU)	(mg/L)	(mV)
MW-713	11/22/2011	6.98	3.07	-28.7
MW-713	2/13/2012	7.97	3.65	-77.7
MW-713	5/17/2012	7.70	3.11	-13.1
MW-713	9/6/2012	7.62	2.16	-120.7
MW-714	2/8/2011	6.20	NA	NA
MW-714	4/7/2011	7.92	3.53	33.6
MW-714	9/2/2011	7.21	3.15	-63.4
MW-714	11/22/2011	6.96	2.77	-24.2
MW-714	2/13/2012	8.05	4.32	-70.5
MW-714	5/17/2012	4.60	3.00	-10.7
MW-714	9/6/2012	7.66	2.58	-50.0
MW-715	2/14/2011	7.50	NA	NA
MW-715	4/8/2011	7.78	2.59	16.3
MW-715	9/2/2011	7.15	3.2	-89.8
MW-715	11/22/2011	6.90	2.73	-125.4
MW-715	2/1/2012	8.32	2.87	-174.2
MW-715	5/17/2012	4.20	2.58	-50.5
MW-715	9/6/2012	7.66	1.97	-98.9

Notes:

DO dissolved oxygen mg/L milligram(s) per liter

mV millivolts

ORP oxidation-reduction potential

SU standard units NA Not Available

DRAWN BY: RLM REVISION DATE: 5/15/12 REVISED BY: BER

SCALE: NOT TO SCALE

SITE LOCATION MAP

environmental, inc

FIGURE

ROJECT NO: 1003-001-300 ATE: 8-24-12 302012 WELL INFORMATION PO OF CASING ELEV. (ft.) PO OF CASING ELEV. (ft.) EPTH OF WELL PUTH OF WELL POTH OF WATER (ft.) EPTH TO WATER (ft.) EPTH TO WATER (ft.) EPTH TO WATER (ft.) URGE VOLUME X 3 = (gal) RODUCT THICKNESS (06 56 DW) PURGE PURGE Sample Flow Rate (gal) Flow Rate Flow Rate Flow Rate PH Sp.Cond. Turbidity PUTH Sp.Cond. (sol.) AND PARAMETERS CONTAINED Time: PUTH Sp.Cond. Sample Time Puth Sp.Cond. Sample Time No. Time No. Time No. Time No. Time No. Time PUTH Sp.Cond. Sample Time No. Time PUTH Sp.Cond. Sample Time PUTH Sp.Cond. Sp.C	PROJECT NAM	ΛE:	CENCO						WELL NO.	EW-1		Walker
WELL INFORMATION OP OF CASING ELEV. (ft.) WELL DIAMETER U'' (with air line) (inches) EPTH OF WELL EPTH TO WATER (ft.) ESHIT TO WATER (ft.) ASING VOLUME RODUCT THICKNESS (Gal) (G	ROJECT NO.	:	1003-001	-300					SAMPLED BY	: Frane So	sic	
WELL INFORMATION PO OF CASING ELEV. (ft.) PUFIL DIAMETER (III) (III	ATE: 8.2	4.12	3Q2012									
POF CASING ELEV. (Ft.) (Ft.)									WELL NOTES	S:	Typically has	FPPH
ELL DIAMETER 4" (with air line) (inches) (PTH TO WATER (SEGHT OF WATER COLUMN (SIGHT OF WATER COLUMN SING VOLUME* Hgt. x 0.163 Gal./Ft. = (gal) JRGE VOLUME X 3 = (gal) FURGE DATA Time: Purge Volume Flow Rate (Gal./Min.) PURGE DATA Time: Purge Volume Flow Rate (Gal./Min.) FOR Sp. Cond. Turbidity DO Temperature TDS ORP Color Odor (s/cm) NTUS mg/L (F/C) ** AND PARAMETERS COLUME TO FREE PRODUCT * Sample Sample Time Packing Analyses Container Quantity Preservative FPH product top-dawn skinn VOT SAMPLED ice 82608-VOCS+Oxys VOAS 3 HCL EW-l capped and air line not used; stinger story of the product top-dawn skinn VOT SAMPLED ice 8015M-TPH-g VOAS 3 HCL EW-l capped and air line not used; stinger interface product begins purging immediated to begins purging immediated to begins purging immediated to a chooled yellowisch. PUMPED:				WELL INFORMATIO	N				WELL COND	ITION:		
PTH OF WELL PTH TO WATER (ft.) (ft.) SING VOLUME* Hgt. x 0.163 Gal./Ft. = (gal) JURGE VOLUME RODUCT THICKNESS (O6. 56 (DTW) (O5. 53 (FPH) = 1.03 (ft.) PURGE DATA Time: Purge Volume Flow Rate pH Sp. Cond. Turbidity DO Temperature TDS ORP Color Odor (Gal./Min.) (gal	OP OF CASIN	NG ELEV.					(ft.)		OK-loc	k is ven	corroted	
EPTH TO WATER (ft.) ASING VOLUME* Hgt. x 0.163 Gal./Ft. = (gal) JURGE VOLUME x 3 = (gal) RODUCT THICKNESS (O. 56 (DIW) 05.53 (FPH) = 1.03 (ft.) PURGE DATA Time: Purge Volume Flow Rate (Gal.) (Gal./Min.) (s/cm) NTUS mg/L (F/c) Sample Sample Time Packing Analyses Container Quantity Preservative TDS ORP Color Odor (S/CM) NTUS mg/L (F/C) Time: Purge Volume Flow Rate (Gal./Min.) (s/cm) NTUS mg/L (F/C) NOTES: Sample Sample Time Packing Analyses Container Quantity Preservative TDS ORP Color Odor (F/C) NOTES: Time Purge Volume Flow Rate (Gal./Min.) (s/cm) NTUS mg/L (F/C) NOTES: Sample Sample Time Packing Analyses Container Quantity Preservative TPH product top-down skinn WOT SAMPLED ice 82608-VOCs+Oxys VOAs 3 HCL EW-l Capped and air line and used; stinger JOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised no 8 ags to get above FPPH water into 10 Darks from product begins purging immediated Employer is a closed to milk color + consisted PUHPED:	ELL DIAME	TER	4"	(with air line)			(inches)					
EIGHT OF WATER COLUMN ASING VOLUME* Hgt. x 0.163 Gal./Ft. = (gal) URGE VOLUME x 3 = (gal) RODUCT THICKNESS (06.56 (DTW) (05.53 (FPH) = 1.03 (ft.) PURGE DATA Time: Purge Volume Flow Rate pH Sp. Cond. Turbidity DO Temperature TDS ORP Color Odor (gal.) (Gal./Min.) (s/cm) NTUS mg/L (F/C) *** AND PARAMETERS COLLECTED DUE TO FREE PRODUCT ** Sample Time Packing Analyses Container Quantity Preservative FPH product top down skium NO. Time NO. Time NO. Time NO. Time NO. Sample Time Packing Analyses Container Quantity Preservative FPH product top down skium NOT SAMPLED lice 8260B VOCS + Oxys VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED lice 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 3 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 4 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 4 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 4 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 4 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 4 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 4 HCL FOR SAMPLED LICE 8015M - TPH-g VOAS 4 HCL FOR SAMPLED	EPTH OF WI	ELL	113.	00			(ft.)					
ASING VOLUME* Hgt. x 0.163 Gal./Ft. = (gal) URGE VOLUME x 3 = (gal) RODUCT THICKNESS (06.56 (DTW) 105.53 (FPFH) = 1.03 (ft.) PURGE DATA Time: Purge Volume Flow Rate (Gal.) (Gal./Min.) (s/cm) NTUs mg/L (F/C) ***AND PARAMETERS COLLECTED DUE TO FREE PRODUCT ** Sample Time Packing Analyses Container Quantity Preservative FPPH orduct top-down skinn WOT SAMPLED ice 82608 - VOCs + Oxys VOAs 3 HCL FW at the first order of the product top down skinn for the pro	EPTH TO W	ATER	106.	56			(ft.)		Overcas	+ + hun	ud (~73	F)
WOT SAMPLED ice 82608-VOCs+Oxys VOAs 3 HCL EN-Capped and air line unt used; stinger VOLS SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised ags to get alone FORM function of the property of the product of the p	EIGHT OF W	ATER COLU	MN				(ft.)			,		
PURGE DATA Time: Purge Volume Flow Rate pH Sp.Cond. Turbidity DO Temperature TDS ORP Color Odor (Gal.) (Gal./Min.) (s/cm) NTUS mg/L (F/C) **NO PARAMETERS COLLECTED DUE TO FREE PRODUCT ** Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 8260B - VOCS + Oxys VOAS 3 HCL EW-1 capped and air line not used; strager VOT SAMPLED ice 8015M - TPH-g VOAS 3 HCL raised a 8 cast to get above FPPH / water intersection of the policy of the product begins purpose insured at the Emploion layer is a closed to milk edger + consistent of the policy of t	ASING VOLU	JME*		Hgt. x 0.163 Gal./Ft. =			(gal)		PURGING A	ND SAMPLIN	NG EQUIPMEN	T:
PURGE DATA Time: Purge Volume Flow Rate pH Sp.Cond. Turbidity DO Temperature TDS ORP Color Odor (Sal.) (Gal./Min.) (Scm) NTUS mg/L (F/C) **NO PARAMETERS COLLECTED DUE TO FREE PRODUCT ** Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top - down skinn NOT SAMPLED ice 82608 - VOCS + Oxys VOAS 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M - TPH-g VOAS 3 HCL raised a 8 ags to get above FPPH / water intervious form of the policy of the product begins purging immediately begins purging immediately Emphysion layer is a closedet mich edger to select of the policy of the p	URGE VOLU	ME		x 3 =			(gal)		YSI 556			
Time: Purge Volume Flow Rate (Gal.) RP Sp.Cond. (s/cm) NTUS mg/L (F/C) **NO PARAMETERS COLLECTED DUE TO FREE PRODUCT * Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 82608-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH / water interference of the product days for the not used; stinger Deak brown product begins purging immediated Employed layer is a closed to include dor + consistent ROMPED:	RODUCT TH	ICKNESS (06.56(1	DTW) 105.53 (1	FPPH) = 1.	03	(ft.)		Interface pro	obe (200')		
Time: Purge Volume Flow Rate (Gal.) RP Sp.Cond. (s/cm) NTUS mg/L (F/C) **NO PARAMETERS COLLECTED DUE TO FREE PRODUCT * Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 82608-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH / water interference of the product days for the not used; stinger Deak brown product begins purging immediated Employed layer is a closed to include dor + consistent ROMPED:												
** NO PARAMETERS COLLECTED DUE TO FREE PRODUCT * Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 82608-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH / water interference of the product begins purging immediately Emulsion layer is a closelyte will color + consistent PUMPED:					Р	URGE DA	TA					
* NO PARAMETERS COLLECTED DUE TO FREE PRODUCT * Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 8260B-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger NOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH / water interference of the same product begins purging immediately Employers a closed to milk color + consistent PUMPED: PUMPED: ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * **NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * **NOTES: FPPH product top-down skinn ### AND PARAMETERS COLLECTED DUE TO FREE PRODUCT * **NOTES: FPPH product top-down skinn **NOTES: FPPH product top-down skinn **Declar pro	Time:	Purge Volume	Flow Rate	pH	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 8260B-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH/water interference begins purging immediately Emphsion layer is a closestic milk color + consistent GW is cloudy/yellowish	,	(Gal.)	(Gal./Min.)		(s/cm)	NTUs	mg/L	(F/C)			1	1
Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 8260B-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH/water interference begins purging immediately Emphsion layer is a closestic milk color + consistent GW is cloudy/yellowish		/	/	FOOL		/	/	/		/	/ /	
Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 8260B-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH/water interference begins purging immediately Emphsion layer is a closestic milk color + consistent GW is cloudy/yellowish	/			FPPH		/	/			/		
Sample Sample Time Packing Analyses Container Quantity Preservative FPPH product top-down skinn NOT SAMPLED ice 8260B-VOCs+Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH/water interference begins purging immediately Emphsion layer is a closestic milk color + consistent GW is cloudy/yellowish	/	/	/	, , , , ,		/	/					
No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. Time No. T	*	NO 17	KAME	EKS COLLEG	ED DUE	OFR	EE PK	CODUCI	*			
NOT SAMPLED ice 8260B-VOCs + Oxys VOAs 3 HCL EW-1 capped and air line not used; stinger VOT SAMPLED ice 8015M-TPH-g VOAs 3 HCL raised a 8 ags to get above FPPH/water interference begins purging immediately Emulsion layer is a closestic milk color + consistent GW is cloudy/yellowish	Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-	FOOLI	6 6	0	7 .	
PUMPED: Deals brown product begins purging immediately Emulsion layer is a closestate will ador + consistent BW is cloudy/yellowish							ative	TPP+1 pro	duct top	- down	Skim	
PUMPED: Deck brown product begins purging immediately Emulsion layer is a closofite milk edor + consistent PUMPED: GW is cloudy/4000 with	VOT SAL		ice	8260B - VOCs + Oxys	VOAs	3	HCL	EW-1 Co	apped and	air lin	e not used	; Stinger
PUMPED: Deck brown product begins purging immediately Emulsion layer is a closofite milk edor + consistent PUMPED: GW is cloudy/400 with	JOT SA	MPLED	ice	8015M - TPH-g	VOAs	3	HCL	raised a	8 ags to	get also	ve FPP41/1	vater interfe
PUMPED: GW is cloudy/yellowish								Dock him	WHILL DEAD	of han	mithaula 20	muno Di tol
								- MURDION	Layer 13	a chocom	to mille cell	or + consistent
								aw is c	Hondy/4	Mourist		
				15 year - Tuature	stopped to allo	product perhaus	Je)@ 11:22	Angray 20	11 00	The last	J remoned) (NOW WE
OC = Top of well casing 15 00 - (nower stopped in the probability) = 11:55 Approx. 200 Sections of FPRH removed from well	Casing Volu	$me = r^2h(ft)$	x 7.48 gal/ft.	12:13 Rigo resumed d	kik bown produc	4" well = 0.	66 Gal./Foot		2" well = 0.1	63 Gal /For	nt	
OC = Top of well casing Casing Volume = 2h(ft) x 7.48 gal/ft.3 Casing Volume = 2h(ft) x 7.48 gal/ft.3				Not much FPAH 6	HOIR EMPRESSION	lays the GI	U		Well Gotte	w appgar	5 to be do	mage or lon
OC = Top of well casing Casing Volume = 2h(ft) x 7.48 gal/ft.3 Casing Volume = 2h(ft) x 7.48 gal/ft.3			A .	The AMANA	1.500	Cowd an	(/ .	as lets of	Soudlune	Dive gracial	() George Court
OC = Top of well casing Casing Volume = 2h(ft) x 7.48 gal/ft.3 Casing Volume = 2h(ft) x 7.48 gal/ft.3			0.	50 gal total 1 F 10	+ Swigne	x Environm	ental Inc.		heurd int	oly when	lest Doors	activated. It
OC = Top of well casing Casing Volume = 2h(ft) x 7.48 gal/ft.3 Casing Volume = 2h(ft) x 7.48 gal/ft.3			2640 V	Valnut Ave, Unit F, Tus	tin, CA 92780	714.508.08	300 ph 71	4.508.0880 f	x www.m	urexenv.co	om and	1000
OC = Top of well casing			(3) H	1- line commerces + 24	edet lameray	- 196 Late 1	weld.	1 X 30 apr	kes = 120	1+30+3	0= 200)

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 8-27-2012	3Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	08.73	(ft.)
HEIGHT OF WATER COLUMN	21,27	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 14,0382	(gal)
PURGE VOLUME	x3= 42. 1146	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-1	Walker
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	ITION:	
OK		
WEATHER C	ONDITIONS:	
Dear Su	nny/light	breeze (n 91°F)
PURGING A	ND SAMPLING E	QUIPMENT:
YSI 556		
Interface pr	obe (200')	

				P	URGE DAT	ГА					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP MV	Color	Odor
1342	5	VAC TRUCK	7.99	2.532	/	3.21	26.54	/	-80.6	Cloudy	Hila
1345	10		7.98	2.521	/	2.79	25.76	/	-77.9	Clear	Mild
1349	15	V	8.00	2.507	/	2.06	25.04	/	-78.3	Clear	4:10

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.27.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 1111 000710 01 0 1/1-20
1	8.27.12	ice	8015M - TPH-g	VOAs	3	HCL	LL_WI_082712_01 @ 14:38

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

CENCO PROJECT NAME:

1003-001-300 PROJECT NO .:

8.27.2012 DATE:

WELL NO. SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP ULV	Color	Odor
1354	20	VAC TRUCK	7.96	2.501	-	2.02	25.06	_	-72.7	Clear	Hill
358	25		7.98	2.510	-	2.39	25.05	_	-69.0	Clear	Mila
1403	30		7.94	2.504	-	2.30	25.07	_	-68.2	Clear	Wild
1407	35		7.96	2.507	_	2.52	25.28	_	-71.4	Clear	Mile
1411	40		7.93	2,507	-	2.36	25.47	_	-61.3	Clear	Mias
1417	45		7.91	2.509	_	2.27	25.50	-	-62.1	Clear	Hill
1424	50		7.90	2.509	_	2.69	25.66	-	-60.4	(lear	Hild

CENCO PROJECT NAME: 1003-001-300 PROJECT NO .: DATE: 8-27-12 3Q2012

WELL INFORMATION	
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 4"	(inches)
DEPTH OF WELL 30.00	(ft.)
DEPTH TO WATER 109.65	(ft.)
HEIGHT OF WATER COLUMN 20.35	(ft.)
CASING VOLUME* Hgt. x 0.16 3 Gal./Ft. = 3.43	(gal)
PURGE VOLUME x 3 = 40, 293	(gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	W-4	Walker
SAMPLED B	r: Frane Sosic	
WELL NOTE		
WELL COND	ITION:	
OK-U	id doesn't	bolt down
WEATHER C	ONDITIONS:	•
Clear /s	June (75	°F)
/		
PURGING A	ND SAMPLING EQ	JIPMENT:
YSI 556		
Interface pr	obe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP MV	Color	Odor
1020	5		8.11	2.213	/	3.93	23.62	/	-69.0	Clear	Hilo
1032	10		8.19	2.258		2.70	23.35	/	-90.8	Clear	Hild
1038	15		8.22	2.228	/	2.57	23,10	/	-77.7	Clair	Hild

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.27.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1000110 110 1000
1	1 8.27.12	ice	8015M - TPH-g	VOAs	3	HCL	LL_W4_082712_01 @ 12:30

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

CENCO PROJECT NAME:

PROJECT NO .:

1003-001-300

8.27.2012 DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP ulV	Color	Odor
1050		VAC TRUCK	8.16	2.237	_	3.19	20.57		-34.0	Clear	Hill.
1134	30		8.12	2.204	_	3.43	20.42	_	7.8	Chear	Mild.
1154	35		8.09	2.237	_	3.82	20.90	_	5.6	Clear	Hill
1215	40		8.08	2.238		3.84	21.35	_	11.7	Clear	Mild
						1					
-											

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	3Q2012 8-29-12	

	WELL INFORMATION	
TOP OF CASING ELEV.	- 1	(ft.)
WELL DIAMETER	U 6	(inches)
DEPTH OF WELL		(ft.)
DEPTH TO WATER		(ft.)
HEIGHT OF WATER COLUMN		(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-7	Site
SAMPLED BY:	Frane Sosic	
WELL NOTES:	No purge well (sa	imple in any order
WELL CONDITION	ON:	
WEATHER CON	DITIONS:	
WEATHER CON		-
PURGING AND	SAMPLING EQUIPME	:NT:
		ENT:

				PURGE DAT	TA					
Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
	(Gal.)	(Gal.) (Gal./Min.)	(Gal.) (Gal./Min.)	(Gal.) (Gal./Min.) (s/cm)	(Gal.) (Gal./Min.) (s/cm) NTUs	(Gal.) (Gal./Min.) (s/cm) NTUs mg/L	(Gal.) (Gal./Min.) (s/cm) NTUs mg/L (F/C)			

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8-29-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 11 M 000012 at 6 0:00
1	800	ice	8015M - TPH-g	VOAs	3	HCL	LL_W7_082912_01 € 8:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	3Q2012	8.29.12

WELL INFORMATION							
TOP OF CASING ELEV.	- 11	(ft.)					
WELL DIAMETER	n 14"	(inches)					
DEPTH OF WELL		(ft.)					
DEPTH TO WATER		(ft.)					
HEIGHT OF WATER COLUMN		(ft.)					
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)					
PURGE VOLUME	x 3 =	(gal)					
PRODUCT THICKNESS		(ft.)					

WELL NO.	W-8	Site	
SAMPLED BY:	Frane Sosic		
WELL NOTES:	No purge well (sar	nple in any order	
WELL CONDITION	ON:		
WEATHER CON	IDITIONS:		
	IDITIONS: SAMPLING EQUIPME	NT:	
	*	NT:	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.29.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 1110 000212 01 0 11.20
1	1130	ice	8015M - TPH-g	VOAs	3	HCL	LL_W8_082912_01 @ 11:30

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 8. 28.12	302012	

TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2'		(inches)
DEPTH OF WELL	110.00	(ft.)
DEPTH TO WATER	90.86	(ft.)
HEIGHT OF WATER COLUMN	19.14	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 3. 1/982	(gal)
PURGE VOLUME	x3 = 9.35946	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-9	Site
SAMPLED BY:	Frane Sosic	

CK-	does not bott down
WEATH	ER CONDITIONS:
Chear	SUMMy light breeze (280F
PURGIN	G AND SAMPLING EQUIPMENT:
YSI 556	or the state of th
Interfac	e probe (200')

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP M/	Color	Odor
0834	5.		. 7:70	2.566	1	2.61	26.46	/	36.6	Rusta	Slight
	0*	_	-		/	_			_		-0
					/			/			

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	W-9 went dry ~ 6 gallows. Allowed to rechange prior
1	8.28.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 119 000812 01 01000 to gamplin
	1000	ice	8015M - TPH-g	VOAs	3	HCL	LL-W9_082812_01 @ 10:00 to gampli
	-						

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PROJECT NAIVIE:	CENCO				VVEL
PROJECT NO.:	1003-001	-300	/		SAM
DATE:	3Q2012	8.23.12/	8.28.12		
		(Purged)	(Seuplal)		WEL
		WELL INFORMA	TION		WEL
TOP OF CASING ELEV	1.			(ft.)	0
	-6.1				

WELL INFOR	MATION
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 2"	(inches)
DEPTH OF WELL	(ft.)
DEPTH TO WATER	(ft.)
HEIGHT OF WATER COLUMN	(ft.)
CASING VOLUME* Hgt. x 0.163 Gal.	/Ft. = (gal)
PURGE VOLUME x 3	= (gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	W-10	Site 2
SAMPLED BY:	Frane Sosic	
WELL NOTES:		purge 1-2 days prior to
WELL CONDIT	ION:	
OK		
Clear Su Did to	NDITIONS:	(286°F)
PURGING AN	D SAMPLING EQU	JIPMENT:
YSI 556		
Interface pro	be (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
/		/			/	/	/	/	/		/
/		/	/	/	/	/	/	/	/	/	/
	/	/	/	/		/		/	/		

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	No parameters collected as well went of
	8.28.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	IN-10 pormal Day of 2-3 mallons
	12:47	ice	8015M - TPH-g	VOAs	3	HCL	Will allow it to tackarge for several
-							days prior to sampling.
							LL_WIO_082812_01 @ 1247

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

4" well = 0.66 Gal./Foot

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 8-28-12	302012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2	"	(inches)
DEPTH OF WELL	113.00	(ft.)
DEPTH TO WATER	96.74	(ft.)
HEIGHT OF WATER COLUMN	16.26	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2,65038	(gal)
PURGE VOLUME	x3 = 7.95/14	(gal)
PRODUCT THICKNESS 96	.74 (DTW) - 96.65 (FPPH) = 0.0)9 (SHEEL) (St.)

WELL NO. V	V-11	Site 2
SAMPLED BY: FI	rane Sosic	
WELL NOTES:	Historically o	ontained FPPH
_		Ontained 17711
WELL CONDITIO		
Very Goo	OO	
WEATHER COND	DITIONS:	
Clear/sunn	4/breezey	(~95°F)
1)'	
PURGING AND S	AMPLING EQUIP	MENT:
YSI 556		
Interface probe	(200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS	ORP WV	Color	Odor
1400	5	VAC TRUCK	7.53	1.974	1	4.20	29.30	/	-115.6	Light gray	Strone
1419	10		7.62	1.976		3.27	29.33	/	-120.2	Charles	Strong
436	15		7.50	1.955	/	1.56	28.46	/	-122.5	Clordy	Strong

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.28.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_WII_082812_01 @ 1526
1	1526	ice	8015M - TPH-g	VOAs	3	HCL	- LL _WII_062612_UI & 1520

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	3Q2012 S. 30. 2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	116.00	(ft.)
DEPTH TO WATER	101.91	(ft.)
HEIGHT OF WATER COLUMN	14.09	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2, 29667	(gal)
PURGE VOLUME	x3=6,89001	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	W-12	Site
SAMPLED BY:	Frane Sosic	
WELL NOTES:	May Be Dry	
WELL CONDITI	ON:	
0000	_	
GUL		
Scattered	IDITIONS: Indu = huxud From flowers SAMPLING EQUIPME	
Partly clo	roce flowers	

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP W.V	Color	Odor
1327	5		7.87	2.042	/	2.57	24.44	/	-97.0	Cloudy	Hil
353	10		7.63	2.030	/	2.15	27.88	/	-98.7	Cloudy	Hill
					/			/)	

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.30.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1 111 1 1100
1	1423	ice	8015M - TPH-g	VOAs	3	HCL	LL_WIZ_083012_01 @ 1423

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 8-20-12 3Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	112.00	(ft.)
DEPTH TO WATER	93.03	(ft.)
HEIGHT OF WATER COLUMN	18,97	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 3, 092//	(gal)
PURGE VOLUME	x3=9.27633	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	IVIW-14A	Hospital
SAMPLED B	Y: Frane Sosic / A	- W
WELL COND	OITION:	
GOOD		
WEATHER C	ONDITIONS:	
Claris	souny /werm (a 80°F)
PURGING A	ND SAMPLING EQUIP	MENT:

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP MV	Color	Odor
815	5	VAC TRUCK	7.50	1.450	/	4.03	23.55	/	-56.1	Clear	Mild
818	10		7.98	1.490		3.16	23.14		-88.0	Clear	Hild
820	15		8.04	1.516	/	3.07	23.05	/	-97.7	Clear	Dlild
825	20		8.10	1.540	/	3.44	23.13	/	-76.9	Clear	Mild
Sample	Sample Time	Packing	Analyses	Container	Quantity	Preserv-		NOTES:			
No.	Time					ative					
1	8.20.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1 1 1	111 00	20010	010	8:40
1	8:40	ice	8015M - TPH-g	VOAs	3	HCL	LL_1	44-08	32012	01 6	0.10
	-						-				

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

YSI 556

Interface probe (200')

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 8-20-12

3Q2012

	WELL INFORMATION									
TOP OF CASING ELEV.		(ft.)								
WELL DIAMETER 2"		(inches)								
DEPTH OF WELL	167.00	(ft.)								
DEPTH TO WATER	92,45	(ft.)								
HEIGHT OF WATER COLUMN	74.55	(ft.)								
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 12, 15165	(gal)								
PURGE VOLUME	x3=36.45495	(gal)								
PRODUCT THICKNESS		(ft.)								

WELL NO.	MW-14B		Hospital
SAMPLED BY:	Frane Sosic	/AW	

WELL CONDITION:

600D

WEATHER CONDITIONS:

Clear/sumy/worm (~ 82°F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature C	TDS	ORP M. V	Color	Odor
910	5	VAC TRUCK	8.23	1.583	/	8.03	22.78	/	-78.8	Cloudy	Mile
918	10		8.20	1.588	/	2.81	21.92	/	-100.0	Cloudy	Mile
926	15	V	8.21	1.586	/	2.54	21.87	/	-91.3	Cloudly	Milo

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.20.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_14B_082012_01 @ 10:36
1	10:36	ice	8015M - TPH-g	VOAs	3	HCL	122-145-00012-01 6 10.36
-							

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

8.20.2012

WELL NO. 14-B

SAMP

PLED	BY:	Frane	Sosic	/	AW	
				/		

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cand.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP MV	Color	Odor
936	20	VAC TRUCK	8.23	1.584	/	2.92	22.19	-/	-42.3 -78.3	Clear	Slight
955	30		8.24	1.583		3.79	22.78		-68.5	Clear	Stillet
1005	35		8.26	1.582		4.00	22.88		-30.3	Clear	Slight

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE: 8.20.12

3Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	195.00	(ft.)
DEPTH TO WATER	92.62	(ft.)
HEIGHT OF WATER COLUMN	102.38	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 16, 68494	(gal)
PURGE VOLUME	x3=50.06382	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-14C	Hospital
SAMPLED BY:	Frane Sosic	

WELL CONDITION:

GOOD

WEATHER CONDITIONS:

Clear Sunny warm (- 85°F

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP M V	Color	Odor
1046	5	VAC TRUCK	8.20	1.691	/	5.75	23.51	/	-49.4	Cloudy	Slight
1053	10		8.22	1.698	/	3.52	23.13	/	-94.8	Clack	Slight
1056	15	V	8.20	1.698	/	2.93	23.35	/	-82.7	Clear	Stille

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.20.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 110 090010 01 0 1000
- 1	12:30	ice	8015M - TPH-g	VOAs	3	HCL	LL_14C_082012_01 @ 1230
			-				

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC	TDS	ORP M/V	Color	Odor
1103	20	VAC TRUCK	8.21	1.693	_	2.75	23.59	_	-75.8	Clear	Wild
1111	25		8.19	1.696		3,72	23.60		-69.5	Clase	Mild
1117	30		8.19	1.687		5.65	23.83	_	-53.2	Cleer	Hild
1124	35		8.18	1.683	_	6.69	24.11		-35.2	Clear	Hill
1134	40		8.17	1.685		7.27	24.30		-22.9	Clear	Mild
1144	45		8.21	1.678	-	8,21	24.52		-13.9	Clear	Mild
1200	20		8.18	1.675		4.95	24.88	_	5.1	Clear	Held

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 8.21.2012 3Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2"		(inches)
DEPTH OF WELL	25.00	(ft.)
DEPTH TO WATER		(ft.)
HEIGHT OF WATER COLUMN		(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-15A	Hospital
SAMPLED BY	: Frane Sosic / A	W
Well Notes:	May con	tain FPPH
WELL COND	TION:	
GOOD		
WEATHER C	ONDITIONS:	
Clear/s	ionny/worm/	(283F)
/	01	
PURGING AN	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pro	obe (200')	

					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
/	/	/	/	/		/	/	/	/	/	/
/	/	/		/	/	/	/	/	/	/	/
/	/	/	/	/	/	/				/	

			Quantity	Preserv- ative	NO GW PARAMETERS TAKEN DUE TO FPP4
2 ice	8260B - VOCs + Oxys	VOAs	3	HCL	Approx. 7 gallou(s) of FPPH removed from
ice	8015M - TPH-g	VOAs	3	HCL	Approx. 35 allows of GW removed subsquest
					LL-15A-082112-01 @ 11:30
	2 ice	2 ice 8260B - VOCs + Oxys	Z ice 8260B - VOCs + Oxys VOAs		Z ice 8260B - VOCs + Oxys VOAs 3 HCL

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	

DATE: 8-20-2012 3Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 2		(inches)
DEPTH OF WELL	156,00	(ft.)
DEPTH TO WATER	109.99	(ft.)
HEIGHT OF WATER COLUMN	46.01	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 7.49963	(gal)
PURGE VOLUME	x3 = 22,49889	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-15B	,	Hospital
SAMPLED BY:	Frane Sosic	AW	
	7		

WELL CONDITION:	
G00D	
WEATHER CONDITIONS:	(~85°F)
PURGING AND SAMPLING EC	QUIPMENT:
YSI 556	
Interface probe (200')	

1243	5	VACTRUCK	8.16	2.127	PURGE D	ATA 4.90	25.20	_	32.2	Light gray	Mila
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1250 1302 1313 1326	10 15 20 25		8.15 8.15 8.12 8.10	2.064 2.053 2.067		4.70 3.51 3.73 5.08	24.61 25.67 25.73 26.38	1	29.2 26.0 34.4 64.6	Clary Clary Clary Clear	Mild Mild Hild Mild
Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative		NOTES:			
/	8.20.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1, 10	P 00	2010	01 0	lum
1	1400	ice	8015M - TPH-g	VOAs	3	HCL	LL_F	05_00.	2012_(01 @ 1	400
			724								

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

CENCO

PROJECT NO .:

1003-001-300

DATE: 8-21-20/2 3Q2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	200.00	(ft.)
DEPTH TO WATER	110.58	(ft.)
HEIGHT OF WATER COLUMN	89.42	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 14, 57546	(gal)
PURGE VOLUME	x3= 43.72638	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-15C		Hospital
SAMPLED BY:	Frane Sosic	/AW	

WEL	L CO	ND	ITI	ON	ŀ

GOOD

WEATHER CONDITIONS:

/ SUMMU

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1212	5	VAC TRUCK	8.23	1.706	/	8.97	26.72	/	1817	Light gray	Mild
233	10		8.24	1.675	/	2.44	27.31	/	149.1	Light grad	Hild
1254	15	V	8.26	1.663	/	2.68	28.07	/	142.8	Candy	Hild

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.21.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_15C_082112_01 @ 1613
1	1613	ice	8015M - TPH-g	VOAs	3	HCL	LL_13C_002112_01 & 1813

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.	15-C	
SAMPLED	RY: Frane Sosic	

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP WV	Color	Odor
1311	20		8.24	1.661	-	3.08	24.76	_	146.0	Cloudy	4:12
1336	25		8.25	1.653	_	3.17	29.23	_	138.2	Cloude	Mild
1359	30		8.21	1.720	_	2.19	28.70	_	124.0	Cloude	Mild
1417	35		8.18	1.735	_	2.41	28.65	_	104.3	Cloudy	Mild
1440	40		8.14	1.750		1.95	28.53		100.5	Clear	Mild
1200	45		8.15	1.746	_	2.70	27.99	_	102.8	Clear	Mild
1528	50		8.12	1.749	_	2.90	27.30	_	125.7	Clear	H;16
	-										

PROJECT NAIVI	E:	CENCO						VALLE INO.	IAIAA-TOW		vvalker	
PROJECT NO .:	9	1003-001-300)			4 -		SAMPLED BY	: Frane Sosic	*	- 11	
DATE: 8.22	2.2012:	3Q2012										
								WELL NOTES	5:			
		W	ELL INFORMAT	ION				WELL COND	ITION:			
TOP OF CASING	G ELEV.					(ft.)		GOOD				
WELL DIAMETI	ER	2"				(inches)						
DEPTH OF WELL 25.00						(ft.)		WEATHER C				
DEPTH TO WATER 12.1						(ft.)		Scatteres	I clouds +	mostly s	Dung (28	
HEIGHT OF WA	ATER COLUN	AN 2.89				(ft.))	
CASING VOLUM	ME*	Hgt	x 0.163 Gal./Ft.	= 2.10107		(gal)		PURGING AND SAMPLING EQUIPMENT:				
PURGE VOLUME x 3 = 6.3032						(gal)		YSI 5S6				
PRODUCT THIC	CKNESS					(ft.)		Interface probe (200')				
				1	PURGE DA	ГА						
Time: P	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP	Color	Odor	

	No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1 1037 ice 8015M - TPH-g VOAs 3 HCL LL_1071_082212_01 6 10.54	1	8.22.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1. 1/1 comple of a local
	1	1037	ice	8015M - TPH-g	VOAs	3	HCL	LL_10/1_08X21Z_01 @ 10.54

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

VAC TRUCK

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 9:22.2017	302012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	2"	(inches)
DEPTH OF WELL	160.00	(ft.)
DEPTH TO WATER	116.76	(ft.)
HEIGHT OF WATER COLUMN	43.24	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 7.048/2	(gal)
PURGE VOLUME	x3=21.14436	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-16B	Walker
SAMPLED B	r: Frane Sosic	
WELL NOTE:	S:	
WELL COND	ITION:	
GOOD		
Hostly	SUMMY & WORM	(~85°F)
PURGING A	ND SAMPLING EQUI	PMENT:
YSI 556		
Interface pr	obe (200')	

1108	5	UNC TRUCK	8.43	2.239 P	URGE DA	TA 2.82	24.02	_	-166.0	Litegray	Hill
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP M V	Color	Odor
1117	10	-11-	8.61	2.145	_	1.95	23.92	_	-189.3	Cloudy	Hill
128	15	-//-	8.62	2.110		2.83	24.00	-	-179.4	Mondy	Hela
1138	20	-//-	8.62	2.092		2.90	24.05	-	-200.0	Cloudy	Hill

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.22.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL_16B_082212_01@1200
1	1200	ice	8015M - TPH-g	VOAs	3	HCL	LL_166_062212_01 @ 120

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 8-22-2012	3Q2012	

TOP OF CASING ELEV.	WELL INFORMATION	(ft.)
WELL DIAMETER	QIII	(inches
DEPTH OF WELL	196.00	(ft.)
DEPTH TO WATER	116.52	(ft.)
HEIGHT OF WATER COLUMN	79.48	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 2.95524	(gal)
PURGE VOLUME	x3=38.86572	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	IAIAA-TOC	vvalker
SAMPLED BY	: Frane Sosic	
WELL NOTES		
WELL CONDI	TION:	
800D		
WEATHER CO	ONDITIONS:	
27.4	nuy light be	400 (n 82°F)
PURGING AN	D SAMPLING EQUIP	MENT:
YSI 5S6		
Interface pro	obe (200')	

				P	URGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	00 mg/L	Temperature (FC)	TDS	ORP W V	Color	Odor
1235	5	VAC TRUCK	8.50	1.523		4.36	26.19	/	-170.8	Cloudy	Heil
1249	10		8.50	1.525	/	1.38	25.43	/	-176.4	Cloudy	Helen
1259	15	V	8.39	1.767	/	1.96	22.67	/	-163.6	Clandy	Hill

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.22.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL-16C-082212 01 @ 1545
1	1545	ice	8015M - TPH-g	VOAs	3	HCL	LL-16C-082212_01 @ 1545

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters

Page

2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

8.00.2012

WELL NO. 16-C

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP M.V	Color	Odor
1315	20	VAC TRUCK	8.34	1.823		2.05	22.85	/	-142.3	Clear	Held
1335	25		8.33	1.835	/	2.77	23.30	/	-150.6	Clear	Held
1356	30		8.32	1.854	/	2.56	22.98	-/-	-147.3	Clear	Wild
1440	35		8.50	1.850	/	2.60	23.02	/	-138,7	Clear	Wild
	1								-		

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 9-73-17	302012	

	WELL INFORMATION		
TOP OF CASING ELEV.			(ft.)
WELL DIAMETER 2			(inches)
DEPTH OF WELL	125.00		(ft.)
DEPTH TO WATER	95.49		(ft.)
HEIGHT OF WATER COLUMN	21.51	29.51	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 4, 8/0/3	4.81013	(gal)
PURGE VOLUME	x3= 14.43087	14,43089	(gal)
PRODUCT THICKNESS			(ft.)

WELL NO. W-17A	Site
SAMPLED BY: Frane Sosic	

WELL CONDITION:	
WEATHER CONDITIONS: Overast + humid (~ 80°F) w/ Diglet Eve
PURGING AND SAMPLING EQUIPMENT:	0
YSI 556 Interface probe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP MV	Color	Odor
045	5	VACTRUCK	8.21	2.204	/	2.33	23.70	/	33.4	Cloudy	Mill
055	10		8.17	2.191	/	1.88	22.86		-11.9	Clear	Hild
110	15		8.12	2.149	/	2.36	22.71	/	20.5	Clear	160d

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Studer way be cracked blown
1	8.23.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 17A 082312 01 @ 1132
/	11:32	ice	8015M - TPH-g	VOAs	3	HCL	11/1000312_01 4 1102

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

WELL NO.

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 8-23-12	3Q2012	

WELL INFORMATION						
TOP OF CASING ELEV.		(ft.)				
WELL DIAMETER		(inches)				
DEPTH OF WELL	170.00	(ft.)				
DEPTH TO WATER	105.78	(ft.)				
HEIGHT OF WATER COLUMN	64.22	(ft.)				
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. = 0.46786	(gal)				
PURGE VOLUME	x3=31.40358	(gal)				
PRODUCT THICKNESS		(ft.)				

SAMPLED BY:	Frane Sosic	
WELL CONDITION	ON:	
OK		
WEATHER CON	DITIONS	

Site

W-17B

PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
Interface probe (200')	

					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP W V	Color	Odor
1148	5	VACTRUCK	8.25	1.629	/	2.92	24.80	/	- 113.0	Cloudy	Hel
156	10		8.29	1.576		1.93	24.68	/	-130.5	Cloudy	Wells
203	15	4	8.26	1.604	/	1.95	25.60	/	-151.2	Clear	Pille

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
/	8.23.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	-LL_17B_082312_01 @ 1255
1	12:55	ice	8015M - TPH-g	VOAs	3	HCL	LL-170 CO2512_01 & 1255
						-	

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

8.23.2012

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP MV	Color	Odor
1208 1212 1217	20 25 30	VACTRUCK	8.26 8.25 8.25	1.602 1.602 1.600		1.94 2.64 2.13	25.95 26.10 26.19		-160.8 -157.6 -156.5	Clear Clear	Mild Mild

PAGE 1 OF 2

DDO	CCT	A IA	BAC	٠
PRO.	ELI	INA	IVIE	

CENCO

PROJECT NO.:

1003-001-300

DATE: 8.23.12 3Q2012

WELL INFORMATION	
TOP OF CASING ELEV.	(ft.)
WELL DIAMETER 2"	(inches)
DEPTH OF WELL 200.00	(ft.)
DEPTH TO WATER 105.87	(ft.)
HEIGHT OF WATER COLUMN 94, 13	(ft.)
CASING VOLUME* Hgt. x 0.163 Gal./Ft. = 5,343.9	(gal)
PURGE VOLUME x3 = 46.02757	(gal)
PRODUCT THICKNESS	(ft.)

WELL NO.	W-17C	Site	
SAMPLED BY:	Frane Sosic		

WE	LL	CO	N	DI	TI	0	N	:
-	-	,	_	_	_		_	-

WEATHER CONDITIONS:

teer sonny thomid (86°F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1317	5	VAC TRUCK	8.46	1,355	/	2.45	25.83	/	-149.3	Gray	Stron
322	10		244	1.377	/	1.66	25.08	/	-1510	Light sky	Strong
327	15	V	8.45	1.342	/	2.22	24.38	/	-180.6	Cloudy	Stron

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.23.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1500	ice	8015M - TPH-g	VOAs	3	HCL	4. 140.0823/2.01@15:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP MV	Color	Odor
335 34 348 354 402 410 423	20 25 30 35 40 45 50	VAC TRUCK	8.43 8.42 8.41 8.41 8.40 8.39	1.330 1.324 1.318 1.311 1.312 1.304		2.03 2.21 2.13 1.97 2.10 2.36 2.39	24.82 24.92 25.14 25.42 25.37 25.65 25.90		-153.3 -181.2 -181.6 -182.3 -177.4 -175.6	Cloudy Clear Cloudy Clear Clear Clear	Strong Strong Strong Strong Strong
									1		

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 8, 77, 17	302012	-

WELL INFORMATION					
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER	4"	(inches)			
DEPTH OF WELL	100.00	(ft.)			
DEPTH TO WATER	93.00	(ft.)			
HEIGHT OF WATER COLUMN	(ft.)				
CASING VOLUME*	Hgt. x-0.163 Gal./Ft. =	(gal)			
PURGE VOLUME	x 3 =	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	MW-104A	Site
SAMPLED BY:	Frane Sosic	

V	
WEATHER	CONDITIONS:
Clear	sunuy/kot (~95°F)
PURGING A	ND SAMPLING EQUIPMENT:
YSI 556	
nterface n	robe (200')

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP par V	Color	Odor
1509		VAC TRUCK	7.69	2.599	/	1.96	26.49	/	51.9	Cloudy	Ston
/		/	/				/			1)	/
					/			/		/	/

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	MW-104A went lry approx. 6-7 gallo
1	8.27.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	into purge. Will allow it to reclarge price
	1553	ice	8015M - TPH-g	VOAs	3	HCL	to collecting sample.
							LL_104A_082712_01 @ 15:53
							LL_101/1_00x112_01 @ 13.33

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PROJECT NAME:	CENCO		WELL NO. MW-106A Bloomfield
PROJECT NO.:	1003-001-300		SAMPLED BY: Frane Sosic
DATE: 824-12	3Q2012		
			WELL NOTES:
	WELL INFORMATION		WELL CONDITION:
TOP OF CASING ELEV.		(ft.)	OK
WELL DIAMETER	4"	(inches)	
DEDTH OF WELL		(ft.)	WEATHER CONDITIONS:

DEPTH OF WELL	10.00	(ft.)
DEPTH TO WATER	04.20	(ft.)
HEIGHT OF WATER COLUMN	5.80	(ft.)
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS		(ft.)

PURGING AND SAMPLING EQUIPMENT:	
YSI 556	
Interface probe (200')	

				PL	JRGE DA	TA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1410	DRU	N 3-4	gollons		/	/	/	/		/	
			0	/	/	/					/
				/ /		/					

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: 14:07
1	8-24-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	- 106A went Dry & approx. 3-4 gallons
1	1630	ice	8015M - TPH-g	VOAs	3	HCL	Will allow reclorge poor to soughing
							LL_106A_082412_01 @ 1630

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

PAGE 1 OF 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE: 8-24-12	3Q2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	13.00	(ft.)
DEPTH TO WATER	04.07	(ft.)
HEIGHT OF WATER COLUMN	(ft.)	
CASING VOLUME*	Hgt. x 0.163 Gal./Ft. =	(gal)
PURGE VOLUME	x 3 =	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	IAIAA-TOAM	Bioomiteid
SAMPLED BY	/: Frane Sosic	
WELL NOTES	5:	
WELL COND	ITION:	
GOOD		
WEATHER C	ONDITIONS:	(h82°F)
PURGING A	ND SAMPLING EQUIPM	MENT:
YSI 556		
Interface pr	obe (200')	

	PURGE DATA										
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP	Color	Odor
1435	5	HAC TRUCK	8.18	1.800	1	2.05	25.69	/	-220.7	Gray	Strong
438	10		8.12	1.791	/	1.96	25.18	/	-226.4	Tracs. grau	Strone
441	15.	•	8.17	1.789	/	2.36	24.81	/	-225.6	Trous gra	Strock

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air line used for purge
1	8.24.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	LL 107A 082412_01@ 1523
	1523	ice	8015M - TPH-g	VOAs	3	HCL	101/LUX412-016 1520

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well = 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

8.24.2012

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP MV	Color	Odor
1444	20	VAC TRUCK	8.15	1.789	_	2.18	24.80	-	-225.5	Cloudy	Strong!
1447	25		8.13	1.800	_	2.67	24.79	~	-226.1	Gould	Strong,
1450	30		8.11	1,805		2.34	25.00	-	-220.0	Clear	Strong.
1453	35		8.09	1.813	_	2.50	24.98		-226.3	Char	Strota
1456	40		8.13	1.800		2.56	24.55		- 226.6	Clear	Story.
1500	45		8.13	1.801	_	2.78	24.86		-222.5	Clear	Troud.
1505	20		8.12	1.813	_	2.89	25.10		-226.7	Clear	Strong.
,											

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	302012 8-30-2012	

WELL INFORMATION							
TOP OF CASING ELEV.		(ft.)					
WELL DIAMETER	4"	(inches)					
DEPTH OF WELL	112.00	(ft.)					
DEPTH TO WATER	99.57	(ft.)					
HEIGHT OF WATER COLUMN	12.43	(ft.)					
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 8, 2038	(gal)					
PURGE VOLUME	x 3 =	(gal)					
PRODUCT THICKNESS		(ft.)					

WELL NO.	MW-503B	Lakeland
SAMPLED B	Y: Frane Sosic	
WELL NOTE	S:	
WELL COND	DITION:	
POOR		
WEATHER (CONDITIONS:	
Cheer /S	ionny (2 86°F)	
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	robe (200')	

1115	5		8.22	1.743	PURGE DA	ATA 2.30	26.76	_	94.5	Clear	Milo
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP MV	Color	Odor
1120	10	UtC TRUCK	8.16	1.714	1	2.44	26.36	/	33.0	Clear	Help
1134	20		8.08	1.689	/_	2.32	25.91 25.87	_	- 22.1	Cloudy	Hill
Sample No.	Sample Time	Packing	Analyses	Container	Quantity	Preserv- ative	25.01	NOTES:	T13.0	Cloudy	Held
1	8.30.12		8260B - VOCs + Oxys 8015M - TPH-g	VOAs VOAs	3	HCL HCL	11.5	038_0	83012_	01 0	1200

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

PAGE 1 OF 2

PROJECT NAME: CENCO

PROJECT NO.: 1003-001-300

DATE: 3Q2012 8-31-20/2

	WELL INFORMATION							
TOP OF CASING ELEV.		(ft.)						
WELL DIAMETER 4		(inches)						
DEPTH OF WELL	130.00	(ft.)						
DEPTH TO WATER	97.71	(ft.)						
HEIGHT OF WATER COLUMN		(ft.)						
CASING VOLUME*	Hgt. x0, 66 Gal./Ft. =	(gal)						
PURGE VOLUME	x 3 =	(gal)						
PRODUCT THICKNESS		(ft.)						

WELL NO.	MW-701	Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDITIO	ON:	
GREAT	_	
Clear Su	MMY (2 85 9F)	
PURGING AND	SAMPLING EQUIPME	NT:
YSI SS6		
Interface probe	(200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP MV	Colar	Odor
845	5	VAC TRUCK	8.07	2.001	/	8.23	23.93		56.5	Gray	Stight
350	10		8.05	1.946	/	6.86	23.70		61.3	Litegray	8 Light
355	15	V	8.11	1.904	/	4.72	23.54	/	60.6	Cloudy	824

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
/	8-31-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
- 1	936	ice	8015M - TPH-g	VOAs	3	HCL	LL_701_083112_01 @ 9:36
2	8.31.12	-/1-	8260B	VOA	3	HCI	11 701 000110 00 0011
2	945	-11-	86/5M	LOAS	3	HCI	LL_701_083112_02 € 9:45

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

8.31.2012

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP WV	Color	Odor
858	20	VAC TRUCK	8.04	1.898	_	5.14	23.27		64.7	Cloudy	Stight
900	25		8.01	1.897	_	4.30	23.50		57.6	Cloudy	Stight
903	30		8.00	1.896	_	4.03	23.48	_	64.8	Citegraly	8094
906	40		7.99	1.892	_	3.87	23.54	_	34.7	Lite gray	Slight
910	50		7.98	1.899		3.53	23.61	_	40.5	Cloudy	800 W
913	60		7.99	1,900	_	3.91	23.72	_	25.3	Clear	Stort
916	70		7.97	1.895	_	3.38	23.85	_	30.6	Clear	Slight
920	80		7.98	1,909		4.07	23.81	-	28.2	Cloudy	Slight
923	90		7.96	1,906	_	3.92	24.04	_	27.5	Cloudy	Slight
925	100		7.97	1.904	_	4.00	23.85	-	28.7	Cloudy	Stight
										1	0

PAGE 1 OF 2

PROJECT NAME:

CENCO

PROJECT NO.: 1003

1003-001-300

DATE:

3Q2012

8.31.2012

TOP OF CASING ELEV.		(ft.)		
WELL DIAMETER	4"	(inches)		
DEPTH OF WELL	130.00	(ft.)		
DEPTH TO WATER	97.51	(ft.)		
HEIGHT OF WATER COLUMN		(ft.)		
CASING VOLUME*	Hgt. x0,66 Gal./Ft. =	(gal)		
PURGE VOLUME	x 3 =	(gal)		
PRODUCT THICKNESS		(ft.)		

WELL NO.	MW-702	Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:	Strong H ₂ S / 6	CH ₄ / VOC vapors
WELL CONDITION	DN:	
GOOD		
Clear SUN Greezey PURGING AND	1	MENT:
YSI 556		
Interface prob	e (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
200	5	VACTRUCK	7.95	2.041	/	4.26	28.08	/	-40.0	Clarky	From
203	10		7.94	2.045	/	3.41	26.76		-60.3	Cloudy	Ston
206	15		7.93	2.042		3.26	26.65	/	-99.4	Cloudy	Stor

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Vent well for 4+ hours prior to sampling \(\begin{align*} &= &= &= &= &= &= &= &= &= &= &= &= &= &
1	8.31.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 702 083112 01 @ 1240
1	1240	ice	8015M - TPH-g	VOAs	3	HCL	LL_102_00112_01 0 12 10
2	8.31.12	-11-	8260 B	VOAs	3	HCI	1 700 002110 00 01200
2	1300	-11-	8015 M	VOAs	3	HCI	LL-702-083112-02 @ 1300

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

4" well \$ 0.66 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

8.31.2012

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F C	TDS	ORP MV	Color	Odor
1208	20	VAC TRUCK	7.91	2.042		2.80	26.28		1-99.6	Cloudy	Strong
1210	30		7.87	2.048	/	2.69	26.29	/	-92.5	Clear	Strong
1213	40		7.85	2.017		3.25	26.40		-102.7	Clear	Strong
1217	50		7.79	2.053		3.20	26.50		-97.8	Clear	Strong
1220	60		7.78	2.056		3.17	26.73		-93.6	Clear	Stran
1225	70		7.80	2,053		3.06	26.67		-92.4	Cloudy	Strans
1229	80		7.73	2.068		3.16	26.55		-94.0	Gorde	Store
1232	90		7.76	2.072	/	3.30	26.29		-97.5	Clear	Strong
1235	100		7.76	2.067		3.48	26.26	/	-92.8	Clear	Strong
											_

PAGE 1 OF 2

PROJECT NAME: CENCO
PROJECT NO.: 1003-001-300

DATE: 3Q2012 8-31-2012

WELL INFORMATION					
TOP OF CASING ELEV.		(ft.)			
WELL DIAMETER		(inches)			
DEPTH OF WELL	130.00	(ft.)			
DEPTH TO WATER	99.13	(ft.)			
HEIGHT OF WATER COLUMN		(ft.)			
CASING VOLUME*	Hgt. x∂. 66 Gal./Ft. =	(gal)			
PURGE VOLUME	x 3 =	(gal)			
PRODUCT THICKNESS		(ft.)			

WELL NO.	MW-703	Liospiter
SAMPLED BY:	Frane Sosic	
Well Notes:	New 4" well	
WELL CONDITION	ON:	
GREAT		
Clear SONN		90°F)
PURGING AND	SAMPLING EQUIPME	NT.
	SAITH LING LOOK WILL	41.
YSI 556	SAMI ENTO EQUITATE	VI.

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TD5	ORP	Color	Odor
316	5		8.05	1.953	1	4.09	26.49	/	32.9	Lite gray	Stron
318	10		7.92	1.934	/	3.45	25.06		-0.4	Lite adu	Street
320	15		7.86	1.941	/	3.73	26.18	/	10.5	Lite goods	200

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	8.31.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1400	ice	8015M - TPH-g	VOAs	3	HCL	
2	8.31.12						
Z	1432						
	1,00						

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

831-2012

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP unV	Color	Odor
1321	20	VAC TRUCK	7.81	1.931		3.33	24.80	_	-14.0	Lite grau	Strong
1324	30		7.82	1.922	-	3.41	24.43	-	-16.9	Clouded	Strong
1327	40		7.78	1.916	-	3.29	24.40	_	-19.2	Clear	Strong
1330	50		7.78	1.920	_	3.83	24.32	_	-29.1	Clear	Strong
1332	60		7.77	1.916	-	3.58	24.33	_	-18.0	Clear	Strong
1336	70		7.75	1.918		3.26	24.09		-23.5	Lite aray	Strong
1340	80		7.76	1.910	_	3.03	24.23	-	-21.6	Cloudel	Strong
1343	90		7.72	1.912		3.57	24.36	-	-25.8	Clear	Strong
1348	100		7.68	1.911		3.20	24.50	-	-21.3	Clear	Strong
									_		
-	-								_		
		J = 1									

PAGE 1 OF

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	- 1
DATE:	302012	9-4-2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	100.93	(ft.)
HEIGHT OF WATER COLUMN	29.07	(ft.)
CASING VOLUME*	Hgt. x.66 Gal./Ft. = 19.1862	(gal)
PURGE VOLUME	x3=57.5586	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	WW-704	HOSPIED
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDITION	ON:	
GREAT	_	
Dece /SUM	y (+ 77°F)	
	SAMPLING EQUIPMEN	li-
YSI 556	/2001)	
Interface probe	2 (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP.	Color	Odor
843	5	VAC TRUCK	7.91	2.099	/	3.10	25.89	/	-40.2	Gray	From
845	10		7.89	2.102	/	3.23	25.32	/	+79.7	-11-	712
348	15	V	7.87	2.106	/	2.67	24.98	/	-89.2	Cloudy	-11-

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	well went dry ~ 39 gal.
	9.4.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 70/ 190/12 01 - 10-
1	10:25	ice	8015M - TPH-g	VOAs	3	HCL	- LL-704_090412_01 @ 10:25
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP WV	Color	Odor
852	20	VAC TRUCK	7.95	2,063	_	3.06	25.04	-	-56.8	Clear	Strong
857	25		7.94	2.034		2.39	24.78	_	-44.2	Olive gray	Strang
905	30		7.81	1.992	_	2.93	24.69	_	-14.3	Cloudy	Strong
923	35		7.87	1.920		2.85	25.32		31.7	(bouly	Strong
200	40				_					7	
Dry ~ 39ge). 45										
	X		-								
		-									
										-	

PAGE 10F2

CENCO PROJECT NAME: PROJECT NO .: 1003-001-300 3Q2012 DATE:

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER	4"	(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	102.33	(ft.)
HEIGHT OF WATER COLUM	N 27.67	(ft.)
CASING VOLUME*	Hgt. x. 66 Gal./Ft. = 18.2622	(gal)
PURGE VOLUME	x3= 54, 7866	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-705	Hospital
SAMPLED BY:	Frane Sosic	
Well Notes:		LEL / VOC vapors
WELL CONDITI	ON:	
GREAT		
WEATHER CON Clear/SUM	11110	5°F)
PURGING AND	SAMPLING EQUIPM	ENT:
YSI 556		

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
953	5	VAC TRUCK	7.96	1986	/	4.21	25.89		57.5	Gray	Stron
755	10		7.94	1.964	/	3.53	25.74		-9.2	Cloudy	-11-
757	15	V	7.89	1.953	/	7.82	25.14	/	-28.9	Cloudy	71-

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES: Vent well for 4+ hours prior to sampling
1	9.4.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 705 190112 01 2 10:27
1	1037	ice	8015M - TPH-g	VOAs	3	HCL	LL_705_090412_01 @ 10:37
		_					-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.4.12

WELL NO. 705 SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pli	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC)	TDS	ORP un V	Color	Odor
959		VAC TRUCK	7.89	1.956	/	3.53	25.05	/	-34.8	Cloudy	Strong
1001	25		7.95	1.966	/	3.77	25.22		-32.6	Cloudy	Strong
1003	30		7.84	1.963	-/-	3.84	25.45		+35.0	Cloudy	Story
1005	35		7.90	1.960	-	3.57	24.90		+34.7	Clear	Strong
1010	45		7.81	1944	/	297	25.58	_/	-38.1	Class	Street
1013	50		7.78	1959		3.09	25.40		-33.5	Clear	Strong
1015	55		7.80	1.967	/	3.47	25.32		-28.4	Clear	Strong
								/			
									-	-	
									1		
										-	ļ
					-	-	-			-	

Page 1 of 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	3Q2012	9.4.2012

WELL INFORMATION				
TOP OF CASING ELEV.		(ft.)		
WELL DIAMETER 4"		(inches)		
DEPTH OF WELL	130.00	(ft.)		
DEPTH TO WATER	98.75	(ft.)		
HEIGHT OF WATER COLUMN	31.25	(ft.)		
CASING VOLUME*	Hgt. x.66 Gal./Ft. = 20.625	(gal)		
PURGE VOLUME	x3=61.875	(gal)		
PRODUCT THICKNESS		(ft.)		

WELL NO.	MW-706	Hospitel
SAMPLED BY:	Frane Sosic	
Well Notes:		
WELL CONDITION	ON:	
GREAT		
Clear SUM	my that (95	5°F)
PURGING AND	SAMPLING EQUIPM	ENT:
YSI 556		
Interface probe	(200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP WV	Color	Odor
250	5		8.01	2.062	/	3.40	26.54	/	-54.5	Cloude	Stran
252	10		7.94	2.038	/	3.24	26.03		-86.7	Cloude	Stron
256	15		7.89	2.029	/	2.88	26.36	/	-94.5	Clear	Stron

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	Air-line issue/had to be fixed 64 purple
1	19.4.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1
1	1405	ice	8015M - TPH-g	VOAs	3	HCL	LL-706-090412-01 @ 14:05
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.4.12

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	un V	Color	Odor
30 304 308 320 331 345		(Gal./Min.)	7.86 7.88 7.90 7.81 7.88 7.84	2.044 2.053 2.015 1.999 1.982 1.978	NTUs	mg/L 2.81 2.88 2.60 2.53 2.67 3.24	16(c) 26.78 26.50 26.18 26.47 26.43 26.32		- 81.2 - 73.6 - 57.5 - 27.0 - 3.9 18.2	Clear Clear Cloudy Cloudy Cloudy	Strong Strong Strong Strong

Page 142

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	3Q2012 9.4.2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	96.40	(ft.)
HEIGHT OF WATER COLUMN	33.60	(ft.)
CASING VOLUME*	Hgt. x. 66 Gal./Ft. = 22.176	(gal)
PURGE VOLUME	x3=66,528	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	IVIVV-/U/	Lakeline
SAMPLED B	: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
G000		
Clears slight by	ONDITIONS: OUNTY HOT (A P ECCEPTION LAKE IT ND SAMPLING EQUIP	PS°F) PM PMENT:
YSI 556		
Interface pr	obe (200')	

					PURGE DA	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
1422	5	VAC TRUCK	7.68	1.775	/	4.44	24.24	/	15.4	Gray	Stron
1475	10		7.64	1.773	/	3.49	25.54	/	-59.5	Olive	Stron
1427	15	4	7.68	1.462	/	3.78	24.92	/	-77.7	Vellowish	Stron
1121	1/3		1.00	1. 102		0, 10	1. 12		1.1.1	y-macoran	-

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.4.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	II TOT MONITO OF BUILD
1	16:13	ice	8015M - TPH-g	VOAs	3	HCL	LL_707_090412_01 @ 16:13
							_

ADDITIONAL INFORMATION:

TOC = Top of well casing

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page $\frac{2}{2}$ of $\frac{2}{2}$

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

WELL NO.

Time:	Purge Volume	Flow Rate	pl·l	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature	TDS	ORP	Color	Odor
1429 1431 1435 1438 1440 1446 1505 1521 1536 1550	(Gal.) 20 25 30 40 50 60 70 80 90 100	(Gal./Min.) VAC TRUCK	7.66 7.68 7.60 7.59 7.61 7.57 7.57 7.57 7.57 7.55	0.945 1.764 1.764 1.761 1.765 1.755 1.755	NTUs	mg/L 4.02 3.00 2.79 2.94 2.85 2.63 2.90 2.84 2.99 3.26	24.85 24.95 24.91 25.42 25.70 26.10 25.99 26.18 25.24 25.22		- 75.0 - 81.4 - 72.6 - 52.3 - 47.5 - 33.6 - 40.4 - 32.0 - 46.3 - 44.5	Clordy/a Clordy Clear Clear Clear Clear Clear	Strong Strong Strong Strong Strong Strong
							-				

Page 1 & 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

3Q2012

9.5.2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	95.77	(ft.)
HEIGHT OF WATER COLUMN	34.23	(ft.)
CASING VOLUME*	Hgt. x0.66 Gal./Ft. = 22.5918	(gal)
PURGE VOLUME	x3=67.7754	(gal)
PRODUCT THICKNESS 95.	88-95.47 = 0.11	(ft.)

WELL NO.	MW-708	Hospital
SAMPLED BY:	Frane Sosic	

Well Notes: May contain FPPH

WELL CONDITION:

GOOD

WEATHER CONDITIONS:

Clerely / howid finterwittent rain (+ 770F)

PURGING AND SAMPLING EQUIPMENT:

YSI 556

Interface probe (200')

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F/C)	TDS	ORP un V	Color	Odor
855	5	VAC TROCK	7.87	1.941	/	3.03	24.45	/	-55.5	Traces. black	Strone
858	10		7.82	1.944	/	2.94	24.16	/	-127.2	Traws. Hack	Strong
900	15	4	7.91	1.947	/	2.28	23.54	/	-113.3	Youly gary	Strank
100	112	V	1. 14	11.777	/	2,20	201	-	110.0	Jung gere	011

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.5.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 700 20010 01 09:39
	939	ice	8015M - TPH-g	VOAs	3	HCL	LL_708_090512_01 @ 9:39
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.5.2012

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP	Color	Odor
903	20	VAC TRUCK	7.84	1.938	-	2.35	123.94	_	F 137.2	Clear	Strong
906	25		7.83	1.944	-	2.50	23.70	-	+146.8	Clear	
909	30		7.80	1.956	_	2.72	23.90	_	+103.7	Clear	
914	40		7.84	1.955		2.25	24.13		+134.9	Clear	
921	50		7.90	11.947		2.62	24.09		+ 100.7	Clear	
928	60		7,87	1.957		2.17	24.38	_	+128.4	Clear	V
935	70		7.78	1.967		2.39	24.51	_	- 113.1	Clear	Strong
180 500											

Page 1 8 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	3Q2012 9.5.2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	108.60	(ft.)
HEIGHT OF WATER COLUMN	27.40	(ft.)
CASING VOLUME*	Hgt. x266 Gal./Ft. = 14, 124	(gal)
PURGE VOLUME	x3=42.342	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-709	Hospital
SAMPLED BY	: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
Very a	ood	
10		
WEATHER C	ONDITIONS:	de (2 80°F)
PURGING AI	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

PURGE DATA											
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP M V	Color	Odor
1237	5		7.96	2.134	/	3.35	23.74	/	+117.9	Cloudy	Hill
1239	10		7.97	2.145	/	2.31	22.68	/	-97.4	Clear	Hill
1242	15		7.98	2.139	/	2.19	22.64	/	-112.7	Lite gray	Hill

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.5-12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 400 000-10 01 01000
1	13:33	ice	8015M - TPH-g	VOAs	3	HCL	LL_709_090512-01 € 1333

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.5.2012

WELL NO.

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pl:I	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F.C)	TDS	MV ORP	Color	Odor
1245		VAC TRUCK	7.96	2.129	_	1.98	22.58		-98.6	Lite gray	Hill
1248	25	Who I Ruck	7.99	2.139	_	2.25	22.51		-76.3	Clive gray	
1253	30		8.00	2.144	_	2.13	22.47	_	+61.5	Olive grand	
1259	35		7.77	2.164	_	1.71	22.72		-118.3	Clear	
1308	40		7.83	2.163		2.00	22.87	_	+116.7	Cloudy	1
1320	45		7.82	2.163	_	2.07	22.89		-1/3.1	Clar	Hild
					-						
	-										
											-
										-	
								_			
				-	-				-		
					-				-		
					1				1		

Page 142

PROJECT NAME:	CENCO
PROJECT NO.:	1003-001-300
DATE:	302012 9.5.2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL	30.00	(ft.)
DEPTH TO WATER	94.25	(ft.)
HEIGHT OF WATER COLUMN	35.75	(ft.)
CASING VOLUME*	Hgt. x. 66 Gal./Ft. = 23. 595	(gal)
PURGE VOLUME	x3=70,785	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-710	Hospital
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
Very G	ical	
	Mumid Drie	esk (285F)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	-

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP WV	Color	Odor
1416	5	VAC TRUCK	7.97	1.731	1	5.69	23.96	/	41.5	Cloudy	Sligh
418	10		7.97	1,431		2.84	22.60	/	69.8	Cloudy	Stigt
420	15	V	7.93	1.426	/	2.86	22.34	/	60.9	Cloudy	Eligh

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.5.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	1 -11- 22-1- 1
1	1500	ice	8015M - TPH-g	VOAs	3	HCL	LL_710_090512_01@15:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.5.12

WELL NO. 710

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (FC	TDS	orp m V	Color	Odar
1422	20	VACOUM	7.91	1.721	/	2.35	22.31	/	55.0	Clear	Stinut
1423	25	TRUCK	7.90	1.722	/	2.41	22.44	/	147.1	Clear	4
1425	30		7.91	1.719	/	2.76	22.37	/	45.4	Cloudy	
1427	35		7.89	1.718	/	2.64	22.62	/	36.3	Cloudy	
1429	40		7.88	1.719	/	2.87	22.70		34.5	Clear	
1435	50		7.88	1.719	/	3.06	22.91	/	35.2	Clear	
1440	60		7.90	1.718	/	2.63	22.65		36.1	Clear	V
1446	70		7.85	1.715	/	2.32	22.70	/	30.5	Clear	Slight

Page 18 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	3Q2012 9-5-2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	101.05	(ft.)
HEIGHT OF WATER COLUM	v 28.95	(ft.)
CASING VOLUME*	Hgt. x .66 Gal./Ft. = 19.107	(gal)
PURGE VOLUME	x3=57.32/	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-711	Hospita
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
GREA	T	
Cloudy/	CONDITIONS:	6 (285°F)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr		

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	00 mg/L	Temperature (F(C)	TDS	ORP WV	Color	Odor
1514	5	VAC TRUCK	7.73	1.728		3.60	24.03	/	-175.3	Cloudy	Stron
1516	10	1	7.77	1.704	/	2.65	23.02	/	-180.5	Cloude	Stron
15/8	15	V	7.76	1.705	/	2.38	22.40	/	-182.1	Cloudy	Strad

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.5.12	ice	82608 - VOCs + Oxys	VOAs	3	HCL	7// 000-1-1
1	1615	ice	8015M - TPH-g	VOAs	3	HCL	LL_711_090512_01 e 16:15

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = r2h(ft) x 7.48 gal/ft.3

2" well = 0.163 Gal./Foot

RA419488351IT

Additional Groundwater Quality Parameters
Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.5.12

Time:	Purge Volume	Flow Rate	pH	Sp.Cond.	Turbidity	DO	Temperature	TDS	ORP	Color	Odor
	(Gal.)	(Gal./Min.)		w So/cm)	NTUs	mg/L	(FC)		uV.		<u></u>
1520	20	VACUUM	7.77	1.699	/	2.12	22.43	/	-176.8	Lite gray	Strong
1522	25	TRUCK	7.77	1.690	/	2.22	22.75	/		Life growy	
1524	30		7.77	1.714	/	1.87	23.04		+/80.0	Cloudy	
1530	40		7.83	1.731		1.78	23.46		+156.7	Cloudy	
1537	50		7.79	11.736		1.80	23.57	/,	-122.6		
1546	60	1	7.76	1.748		2.04	23.07		-175.4	Cloudy	Strong
								-			
											3

GROUNDWATER SAMPLING LOG

Page 1 9 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-3	00
DATE:	302012	9.6.2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	98.14	(ft.)
HEIGHT OF WATER COLUMN	31.86	(ft.)
CASING VOLUME*	Hgt. x 66 Gal./Ft. = 21.02+6	(gal)
PURGE VOLUME	x3=63.0828	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-712	Hospital
SAMPLED BY	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
GREAT		
WEATHER C	onditions:	S°F)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

					PURGE [DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP WV	Color	Odor
045	5		7.72	1.703	/	4.20	24.19	/	-113.0	Cloude	Stone
051	10		7.44	1.697	/	2.87	23.59	/	-125.7	UC COWA	Stron
053	15		7.48	1.702	/	2.63	23,57	/	-143.4	Dellewish	Ston

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.6.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	11:30	ice	8015M - TPH-g	VOAs	3	HCL	LL_712_090612_01 @ 11:30
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

2" well = 0.163 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page $\frac{2 \text{ of } 2}{}$

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.6.12

WELL NO. 712

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP unV	Color	Odor
1055		VACUUM	7.79	1.703	/,	2.56	23.57	/,		dive gray	
1028	35	TRUCK	7.77	1.707	-/-	2.69	23.68		-135.2 Lag 8	Lite grad	
1101	40		7,77	1,692	/	2.40	24.14	/	+16.7	Olive	
1114	50		7.72	1.673	/	2.34	24.39	/	-55.5	Olive	V
123	60		7.68	1.686	/	1.87	24.09		-42.0	Olive	Strong
				-18	-	-					
			<u> </u>								
						-				-	
					-				1		
							+		1		

GROUNDWATER SAMPLING LOG

Page	1	4	2
	_		

PROJECT	NAME:
	110

CENCO

PROJECT NO.: 1003-001-300

DATE:

3Q2012

9.6.2012

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER		(inches)
DEPTH OF WELL	130.00	(ft.)
DEPTH TO WATER	103,83	(ft.)
HEIGHT OF WATER COLUMN	26.17	(ft.)
CASING VOLUME*	Hgt. x.66 Gal./Ft. = 17.2722	(gal)
PURGE VOLUME	x3=51.8166	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-713	Hospital
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
Very a	and	
UU		
WEATHER C	ONDITIONS:	
Clears	suny /hot (299	5°F)
PURGING A	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pr	obe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
1213	5	VAC TRUCK	7.92	1.927	/	2.98	25.63	/	-40.6	Cloudy	Stron
1215	10		7.87	1.934	/	3.96	24.49	/	-97.8	Cloudy	Strong
218	15	1	7.75	1.983	/	2.85	24.37	/	-154.4	Cloudy	Stra

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.6.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	11 710 000(10 01 - 100
1	1300	ice	8015M - TPH-g	VOAs	3	HCL	LL_713_090612_01 @ 1300

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.6.2012

WELL NO. 713 SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	pH	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP utV	Color	Odor
1221	20	VACUUM	7.72	2.040	/	2.29	24.42	/	-162.0	Cloudy	Hill
227	30	TRUCK	7.62	2.078	/	2.06	25.09		-131.6	Brownish	Hill
1233	40		7.62	2.080		1.87	24.96			Lite bown	Hill
1239	50		7.62	2.090	/	2.16	25.06	/	+120.7	Lite Grown	Hele
		-							-	-	

GROUNDWATER SAMPLING LOG

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	302012 9-6-2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4		(inches)
DEPTH OF WELL	35.00	(ft.)
DEPTH TO WATER	104.72	(ft.)
HEIGHT OF WATER COLUMN	30.28	(ft.)
CASING VOLUME*	Hgt. x.66 Gal./Ft. = 19,9848	(gal)
PURGE VOLUME	x3=59,95944	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-714	Hospital
SAMPLED BY	: Frane Sosic	
Well Notes:		
WELL COND	TION:	
Very Go	DOS	
	,	
WEATHER C		
Clearls	unny/hot (20	75°F)
PURGING AT	ND SAMPLING EQUIP	MENT:
YSI 556		
Interface pro	obe (200')	

					PURGE D	ATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	5p.Cand.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP	Color	Odor
1323	5		7.81	2.495	/	3.21	25.73	/	-39.1	Cloudy	Hill
1326	10		7.84	2.486		3.04	23.74	/	-102.7	Chear	Hild
328	15		7.78	2.480	/	2.24	25.55	/	-107.4	Claser	Hil

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.6.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1400	ice	8015M - TPH-g	VOAs	3	HCL	LL_714_090612_01 @ 14:00

ADDITIONAL INFORMATION:

TOC = Top of well casing

4" well = 0.66 Gal./Foot

2" well = 0.163 Gal./Foot

^{*}Casing Volume = r2h(ft) x 7.48 gal/ft.3

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.6.2012

WELL NO.

SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gai.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C))	TDS	ORP MV	Color	Odor
330 332 335 341 346 352		VACUUM TRUCK	7.78 7.76 7.80 7.72 7.68 7.66	2.478 2.503 2.485 2.479 2.488 2.489		2.28 2.07 2.53 2.12 2.33 2.58	23.50 23.54 23.49 23.92 24.25 24.36		- 111.3 - 95.4 - 123.6 - 65.7 - 63.2 - 50.0	Clear Clear Clear Clear Clear Clear	Hild

GROUNDWATER SAMPLING LOG

Page 1 \$ 2

PROJECT NAME:	CENCO	
PROJECT NO.:	1003-001-300	
DATE:	302012 9.6.2012	

	WELL INFORMATION	
TOP OF CASING ELEV.		(ft.)
WELL DIAMETER 4"		(inches)
DEPTH OF WELL		(ft.)
DEPTH TO WATER	96.30	(ft.)
HEIGHT OF WATER COLUMN	33.70	(ft.)
CASING VOLUME*	Hgt. x . 66 Gal./Ft. = 22, 242	(gal)
PURGE VOLUME	x3=66.726	(gal)
PRODUCT THICKNESS		(ft.)

WELL NO.	MW-715	Hospital
SAMPLED B	Y: Frane Sosic	
Well Notes:		
WELL COND	ITION:	
Very G	ond	
WEATHER C	CONDITIONS:	
PURGING A	ND SAMPLING EQUIP	PMENT:
YSI 556		
Interface pr	obe (200')	

					PURGE D	DATA					
Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond.	Turbidity NTUs	DO mg/L	Temperature (F(C)	TOS	ORP WV	Color	Odor
1440	5		7.78	1.498	/	3.89	25.55	/	-76,9	Cloudy	Strong
1443	10		7.73	1.471	/	3.11	24.38	/	-127.2	Cloudy	Strong
1446	15		7.74	1,463	/	2.72	24.01	/	-130.8	Cloudy	Stor

Sample No.	Sample Time Time	Packing	Analyses	Container	Quantity	Preserv- ative	NOTES:
1	9.6.12	ice	8260B - VOCs + Oxys	VOAs	3	HCL	
1	1605	ice	8015M - TPH-g	VOAs	3	HCL	LL_715_090612_01 @16:05
							-

ADDITIONAL INFORMATION:

TOC = Top of well casing

*Casing Volume = $r^2h(ft) \times 7.48 \text{ gal/ft.}^3$

2" well = 0.163 Gal./Foot

Additional Groundwater Quality Parameters Page 2 of 2

PROJECT NAME:

CENCO

PROJECT NO .:

1003-001-300

DATE:

9.6-12

WELL NO. SAMPLED BY: Frane Sosic

Time:	Purge Volume (Gal.)	Flow Rate (Gal./Min.)	рН	Sp.Cond. (s/cm)	Turbidity NTUs	DO mg/L	Temperature (F(C)	TDS	ORP WV	Color	Odor
1448	20	VACOUM	7.74	1.440	/	2.47	23.95	/	- [26.]	Yellow-bran	Strone
1451	25	TRUCK	7.73	1.480	/	2.69	23.95	/	- 28.0	Clear	
1454	30		7.72	1.482	/	2.40	24.04	/,	-117.9	Clear	
458	40		7.73	1.483		2.61	23.63		-109.2	Clear	
503	50		7.65	1.204	/,	2.64	24.87	/_	-80.7	Clear	-
510	60	-	7.68	1.500		1.91	24.45	-	+61.6	Clear	Chan
520	70	1	7.66	1.504		11.97	24.31		-98.9	Clear	Stron
						-	-		-		
									-		
										-	
						-					
										-	

28 August 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 08/20/12 15:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez For Wendy Hsiao

Saniel & Chivy

Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_14A_082012_01	T121420-01	Water	08/20/12 08:40	08/20/12 15:50
LL_14B_082012_01	T121420-02	Water	08/20/12 10:36	08/20/12 15:50
LL_14C_082012_01	T121420-03	Water	08/20/12 12:30	08/20/12 15:50
LL_15B_082012_01	T121420-04	Water	08/20/12 14:00	08/20/12 15:50
LL_TB_082012	T121420-05	Water	08/20/12 14:00	08/20/12 15:50

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

LL_14A_082012_01 T121420-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	1600	50	ug/l	1	2082119	08/21/12	08/22/12	EPA 8015C
Surrogate 4-Bromofluorobenzene		109 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by F	EPA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

LL_14A_082012_01 T121420-01 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	r.	ounstar La	ווטטו מנטו	ies, inc.				
Volatile Organic Compounds by	EPA Method 8260E	3						
1,2-Dichloropropane	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	II .
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	II .
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	11
Isopropylbenzene	2.8	1.0	"	"	"	"	"	m .
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	II .
Methylene chloride	ND	1.0	"	"	"	"	"	11
Naphthalene	110	1.0	"	"	"	"	08/24/12	11
n-Propylbenzene	8.9	1.0	"	"	"	"	08/24/12	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	II .
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	II .
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	II .
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	m .
Trichloroethene	ND	1.0	"	"	"	"	"	II .
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	m .
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	m .
1,3,5-Trimethylbenzene	20	1.0	"	"	"	"	"	m .
1,2,4-Trimethylbenzene	57	1.0	"	"	"	"	"	11
Vinyl chloride	ND	1.0	"	"	"	"	"	II .
Benzene	500	12	"	25	"	"	"	II .
Toluene	16	0.50	"	1	"	"	"	"
Ethylbenzene	34	0.50	"	"	"	"	"	"
m,p-Xylene	78	1.0	"	"	"	"	"	"
o-Xylene	64	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	II .
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

LL_14A_082012_01 T121420-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260H	3						
Di-isopropyl ether	ND	2.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	2.9	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"
Surrogate Dibromofluoromethane		92.9 %	81-136		"	"	"	"
Surrogate Toluene-d8		95.5 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

LL_14B_082012_01 T121420-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

i urgeable i etroleum fryurocarbo								
C6-C12 (GRO)	180	50	ug/l	1	2082119	08/21/12	08/22/12	EPA 8015C

Surrogate 4-Bromofluorobenzene		104 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EPA	Method 82601	В							
Bromobenzene	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	2.9	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	60	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	13	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	2.4	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

LL_14B_082012_01 T121420-02 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	8.9	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	150	1.0	"	"	"	"	"	"	E
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	56	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

LL_14B_082012_01 T121420-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B												
Di-isopropyl ether	ND	2.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B				
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	п				
Surrogate 4-Bromofluorobenzene		111 %	83.5-	119	"	"	"	"				
Surrogate Dibromofluoromethane		88.8 %	81-1	36	"	"	"	"				

88.8-117

98.4 %

SunStar Laboratories, Inc.

Saviel of Chivy

Surrogate Toluene-d8

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

LL_14C_082012_01 T121420-03 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbon	s by EPA 8015C								
C6-C12 (GRO)	71	50	ug/l	1	2082119	08/21/12	08/22/12	EPA 8015C	
Surragata A Promofluorohorzana		05 1 %	72.6	146	"	"	"	"	

Surrogate 4-Bromofluorobenzene	95.4 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EPA Method 8260B								
Bromobenzene ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B	
Bromochloromethane ND	1.0	"	"	"	"	"	"	
Bromodichloromethane ND	1.0	"	"	"	"	"	"	
Bromoform ND	1.0	"	"	"	"	"	"	
Bromomethane ND	1.0	"	"	"	"	"	"	
n-Butylbenzene ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride ND	0.50	"	"	"	"	"	"	
Chlorobenzene ND	1.0	"	"	"	"	"	"	
Chloroethane ND	1.0	"	"	"	"	"	"	
Chloroform ND	1.0	"	"	"	"	"	"	
Chloromethane ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene ND	1.0	"	"	"	"	"	"	
Dibromochloromethane ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"	
Dibromomethane	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene 1.4	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene 5.8	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

LL_14C_082012_01 T121420-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

3-Dichloropropane	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260E
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

LL_14C_082012_01 T121420-03 (Water)

Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	G G, T							

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Di-isopropyl ether	ND	2.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	II.			
Surrogate 4-Bromofluorobenzene		111 %	83.5-	119	"	"	"	"			
Surrogate Dibromofluoromethane		90.6 %	81-1	36	"	"	"	"			
Surrogate Toluene-d8		95.1 %	88.8-	117	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Irvine CA, 92861

C6-C12 (GRO)

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

98

Project Number: 1003-001-300 Project Manager: Jeremy Squire **Reported:** 08/28/12 18:01

EPA 8015C

LL_15B_082012_01 T121420-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2082119

08/21/12

08/22/12

50

Surrogate 4-Bromofluorobenzene	95.5 %	72.6	-146	"	"	"	"	
Volatile Organic Compounds by EPA Method 8	260B							
Bromobenzene ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B	
Bromochloromethane ND	1.0	"	"	"	"	"	"	
Bromodichloromethane ND	1.0	"	"	"	"	"	"	
Bromoform ND	1.0	"	"	"	"	"	"	
Bromomethane ND	1.0	"	"	"	"	"	"	
n-Butylbenzene ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride ND	0.50	"	"	"	"	"	"	
Chlorobenzene ND	1.0	"	"	"	"	"	"	
Chloroethane ND	1.0	"	"	"	"	"	"	
Chloroform ND	1.0	"	"	"	"	"	"	
Chloromethane ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene ND	1.0	"	"	"	"	"	"	
Dibromochloromethane ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND	1.0	"	"	"	"	"	"	
Dibromomethane ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

LL_15B_082012_01 T121420-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by								
,2-Dichloropropane	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
ris-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	2.7	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	2.9	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	2.6	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	0.52	0.50	"	"	"	"	"	"
Fert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

LL_15B_082012_01 T121420-04 (Water)

	Repor	ting							
Analyte Res	sult L	imit I	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Tert-butyl alcohol	87	10	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	110	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate 4-Bromofluorobenzene		111 %	83.5-	119	"	"	"	"
Surrogate Dibromofluoromethane		90.1 %	81-1	36	"	"	"	"
Surrogate Toluene-d8		96.2 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

LL_TB_082012 T121420-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
l-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
eis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

LL_TB_082012 T121420-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260I
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
hyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:01

LL_TB_082012 T121420-05 (Water)

	Repor	ting							
Analyte Res	sult L	imit I	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260B	
Surrogate 4-Bromofluorobenzene		93.4 %	83.5-119	1	"	"	"	"	
Surrogate Dibromofluoromethane		75.1 %	81-136		"	"	"	"	S-GC
Surrogate Toluene-d8		88.6 %	88.8-117	•	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Saviel & Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2082119 - EPA 5030 GC										
Blank (2082119-BLK1)				Prepared:	08/21/12	Analyzed	1: 08/22/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	92.1		"	100		92.1	72.6-146			
LCS (2082119-BS1)				Prepared:	08/21/12	Analyzed	1: 08/22/12			
C6-C12 (GRO)	5690	50	ug/l	5500		103	75-125			
Surrogate 4-Bromofluorobenzene	131		"	100		131	72.6-146			
LCS Dup (2082119-BSD1)				Prepared:	08/21/12	Analyzed	1: 08/22/12			
C6-C12 (GRO)	5760	50	ug/l	5500		105	75-125	1.20	20	
Surrogate 4-Bromofluorobenzene	120		"	100		120	72.6-146			

SunStar Laboratories, Inc.

Saviel of Chivy

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

ND

ND

ND

ND

ND

1.0

1.0

0.50

0.50

1.0 1.0

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (2082216-BLK1)				Prepared & Analyzed: 08/22/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
I-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	

SunStar Laboratories, Inc.

Saniel & Chivy

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Batch 2082216 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

ND

ND

ND

7.86

7.98

8.44

2.0

2.0

1.0

5.0

8.00

8.00

8.00

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Blank (2082216-BLK1)				Prepared & Analyzed: 08/22/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	

SunStar Laboratories, Inc.

Saviel of Chivy

1,1,2-trichloro-1,2,2-trifluoroethane (CFC

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Di-isopropyl ether

113)

Ethyl tert-butyl ether

Methyl tert-butyl ether

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

98.2

99.8

106

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 2082216 - EPA 5030 GCMS											
LCS (2082216-BS1)	Prepared & Analyzed: 08/22/12										
Chlorobenzene	17 3	1.0	ug/l	20.0		86.4	75-125				
1,1-Dichloroethene	19.8	1.0	"	20.0		99.1	75-125				
Trichloroethene	19 5	1.0	"	20.0		97.3	75-125				
Benzene	19 9	0.50	"	20.0		99.6	75-125				
Toluene	19 3	0.50	"	20.0		96.4	75-125				
Surrogate 4-Bromofluorobenzene	8.64		"	8.00		108	83.5-119				
Surrogate Dibromofluoromethane	8.16		"	8.00		102	81-136				
Surrogate Toluene-d8	8.35		"	8.00		104	88.8-117				
LCS Dup (2082216-BSD1)				Prepared	& Analyze	ed: 08/22/	12				
Chlorobenzene	17 2	1.0	ug/l	20.0	· · · · · · · · · · · · · · · · · · ·	85.8	75-125	0.696	20		
1,1-Dichloroethene	20 3	1.0	"	20.0		102	75-125	2.59	20		
Trichloroethene	19.0	1.0	"	20.0		94.8	75-125	2.55	20		
Benzene	19.6	0.50	"	20.0		97.8	75-125	1.77	20		
Toluene	18 3	0.50	"	20.0		91.5	75-125	5.16	20		
Surrogate 4-Bromofluorobenzene	8.36		"	8.00		104	83.5-119				
Surrogate Dibromofluoromethane	8.07		"	8.00		101	81-136				
Surrogate Toluene-d8	8.06		"	8.00		101	88.8-117				
Batch 2082709 - EPA 5030 GCMS											
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyze	1: 08/28/12				
Bromobenzene	ND	1.0	ug/l	•							
Bromochloromethane	ND	1.0	"								
Bromodichloromethane	ND	1.0	"								
Bromoform	ND	1.0	"								
Bromomethane	ND	1.0	"								
n-Butylbenzene	ND	1.0	"								
sec-Butylbenzene	ND	1.0	"								
tert-Butylbenzene	ND	1.0	"								
Carbon tetrachloride	ND	0.50	"								
Chlorobenzene	ND	1.0	"								
Chloroethane	ND	1.0	"								
Chloroform	ND	1.0	"								
Chloromethane	ND	1.0	"								

SunStar Laboratories, Inc.

Saviel & Chivy

RPD

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyzed	: 08/28/12			
4-Chlorotoluene	ND	1.0	ug/l			-				
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							
sopropylbenzene	ND	1.0	"							
o-Isopropyltoluene	ND	1.0	"							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Γetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Frichloroethene	ND	1.0	"							
Frichlorofluoromethane	ND	1.0	"							

SunStar Laboratories, Inc.

Saniel & Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyzed	1: 08/28/12			
1,2,3-Trichloropropane	ND	1.0	ug/l							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.66		"	8.00		95.8	83.5-119			
Surrogate Dibromofluoromethane	7.72		"	8.00		96.5	81-136			
Surrogate Toluene-d8	8.09		"	8.00		101	88.8-117			

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:01

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

E The concentration indicated for this analyte is above the calibration range of the instrument. This value should be considered as an

estimate as the actual value may be higher.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Saviel of Chivy

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL INC. Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (714) 508-0880 Project Manager: Jeremy Squire (714) 604-5836							Project Name: CENCO Collector: Frane Sosic C							Clie	Page: OF														
	,	1																											
Sample ID [L_14A_082012_0] [L_14B_082012_0] [L_14C_082012_0] [L_15B_082012_0] [LL_TB_082012_0]	Date Sampled 8.20.12 8.20.12 8.20.12	Time 840 1036 1230 1400	Sample Type GW GW GW GW	XXXXTPHg (8015 M)	XXXXVOCs (8260 B)										N N O N Total # of containers		Comme	nts/Pre	servative	SO S									

Relinquished by: (signature) Date / Time Relinquished by: (signature) F. Sesic 8:20:20/2 5:50			Received by: (Sign / Da				ate / Time) 15: 50			/ Time) /5:50- > 8-20-12			/ Time) /5:50 8-20-12			te / Time) /5: 50			tal # o							-	Not	es	
Relinquished by: (signature) Relinquished by: (signature)	Date / Ti		Received by: (Sign / Da				Received good condition/cold 6					6.6																	
Sample disposal Instructions: Disposal @ \$2.0	0 each	Return to	client		Pick	up _			ıur	n arc	und	time); 	Stand	ard	Ь			···										

SAMPLE RECEIVING REVIEW SHEET

BATCH# 7/2/420					
Client Name: Murex	Project:	CENC)	-	
Received by: Sunny	Date/Time Rec	eived:	8.20.12	_/ 15	.50
Delivered by: Client SunStar Courier GSO	FedEx	Other			
Total number of coolers receivedO Temp	criteria = 6°C >	0°C (no	<u>frozen</u> cor	ntainers)	
Temperature: cooler #1 6.8 °C +/- the CF (-0.2°C) =	6.6 °C correcte	ed temperati	ıre		
cooler #2°C +/- the CF (- 0.2°C) =	°C correcte	ed temperati	ıre		
cooler #3°C +/- the CF $(-0.2$ °C) =	°C correcte	ed temperati	ıre		
Samples outside temp. but received on ice, w/in 6 hours of fi	nal sampling.	∑ Yes	□No*	□N/A	•
Custody Seals Intact on Cooler/Sample		□Yes	□No*	N/A	
Sample Containers Intact		∑Yes	□No*		
Sample labels match COC ID's		⊠Yes	□No*		
Total number of containers received match COC		Yes	□No*		
Proper containers received for analyses requested on COC		∑ Yes	□No*		
Proper preservative indicated on COC/containers for analyse	s requested	∑ Yes	□No*	□N/A	
Complete shipment received in good condition with correct t preservatives and within method specified holding times.	- ` <u>-</u> `	ntainers, la	abels, volu	mes	
* Complete Non-Conformance Receiving Sheet if checked	Cooler/Sample Rev	iew - Initia	als and date	Se	8.20.12
Comments:					
				·	
•					

28 August 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 08/21/12 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez For Wendy Hsiao

Saniel & Chivy

Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:03

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_15A_082112_01	T121426-01	Water	08/21/12 11:30	08/21/12 16:30
LL_15C_082112_01	T121426-02	Water	08/21/12 16:13	08/21/12 16:30
LL_TB_082112	T121426-03	Water	08/21/12 00:00	08/21/12 16:30

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:03

LL_15A_082112_01 T121426-01 (Water)

	Reporting							
Analyte Resul	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	23000	50	ug/l	1	2082226	08/22/12	08/24/12	EPA 8015C
Surrogate 4-Bromofluorobenzene		103 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EI	PA Method 8260I	3						
Bromobenzene	ND	25	ug/l	25	2082216	08/22/12	08/24/12	EPA 8260B
Bromochloromethane	ND	25	"	"	"	"	"	"
Bromodichloromethane	ND	25	"	"	"	"	"	"
Bromoform	ND	25	"	"	"	"	"	"
Bromomethane	ND	25	"	"	"	"	"	"
n-Butylbenzene	49	25	"	"	"	"	"	"
sec-Butylbenzene	ND	25	"	"	"	"	"	"
tert-Butylbenzene	ND	25	"	"	"	"	"	"
Carbon tetrachloride	ND	12	"	"	"	"	"	"
Chlorobenzene	ND	25	"	"	"	"	"	"
Chloroethane	ND	25	"	"	"	"	"	"
Chloroform	ND	25	"	"	"	"	"	"
Chloromethane	ND	25	"	"	"	"	"	"
2-Chlorotoluene	ND	25	"	"	"	"	"	"
4-Chlorotoluene	28	25	"	"	"	"	"	"
Dibromochloromethane	ND	25	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	25	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	25	"	"	"	"	"	"
Dibromomethane	ND	25	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	25	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	25	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	25	"	"	"	"	"	"
Dichlorodifluoromethane	ND	12	"	"	"	"	"	"
,1-Dichloroethane	ND	25	"	"	"	"	"	"
1,2-Dichloroethane	ND	12	"	"	"	"	"	"
1,1-Dichloroethene	ND	25	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	25	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	25	"		,,	"	,,	,,

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

LL_15A_082112_01 T121426-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,2-Dichloropropane	ND	25	ug/l	25	2082216	08/22/12	08/24/12	EPA 8260E
1,3-Dichloropropane	ND	25	"	"	"	"	"	"
2,2-Dichloropropane	ND	25	"	"	"	"	"	"
1,1-Dichloropropene	ND	25	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	12	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	12	"	"	"	"	"	"
Hexachlorobutadiene	ND	25	"	"	"	"	"	"
Isopropylbenzene	47	25	"	"	"	"	"	"
p-Isopropyltoluene	ND	25	"	"	"	"	"	"
Methylene chloride	ND	25	"	"	"	"	"	"
Naphthalene	190	25	"	"	"	"	"	"
n-Propylbenzene	110	25	"	"	"	"	"	"
Styrene	ND	25	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	25	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	25	"	"	"	"	"	"
Cetrachloroethene	ND	25	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	25	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	25	"	"	"	"	"	"
,1,2-Trichloroethane	ND	25	"	"	"	"	"	"
,1,1-Trichloroethane	ND	25	"	"	"	"	"	"
Γrichloroethene	ND	25	"	"	"	"	"	"
Trichlorofluoromethane	ND	25	"	"	"	"	"	"
,2,3-Trichloropropane	ND	25	"	"	"	"	"	"
,3,5-Trimethylbenzene	340	25	"	"	"	"	"	"
,2,4-Trimethylbenzene	1100	25	"	"	"	"	"	"
inyl chloride	ND	25	"	"	"	"	"	"
Benzene	540	12	"	"	"	"	"	"
Coluene	370	12	"	"	"	"	"	"
Ethylbenzene	590	12	"	"	"	"	"	"
n,p-Xylene	3300	25	"	"	"	"	"	"
o-Xylene	620	12	"	"	"	"	"	"
Γert-amyl methyl ether	ND	50	"	"	"	"	"	"
Гert-butyl alcohol	ND	250	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:03

LL_15A_082112_01 T121426-01 (Water)

		D							
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Di-isopropyl ether	ND	50	ug/l	25	2082216	08/22/12	08/24/12	EPA 8260B	
Ethyl tert-butyl ether	ND	50	"	"	"	"	"	"	
Methyl tert-butyl ether	160	25	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	120	"	"	"	"	"	"	
Surrogate 4-Bromofluorobenzene		100 %	83.5-	119	"	"	"	"	S-GC
Surrogate Dibromofluoromethane		95.4 %	81-1	36	"	"	"	"	
Surrogate Toluene-d8		96.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

Surrogate 4-Bromofluorobenzene

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:03

LL_15C_082112_01 T121426-02 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

72.6-146

2082226

08/22/12

08/24/12

EPA 8015C

50

91.1 %

ND

ND

ND

ND

ND

ND

ND

ND

1.2

5.2

ND

ND

Bromobenzene	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"

1.0

1.0

1.0

1.0

1.0

0.50

1.0

0.50

1.0

1.0

1.0

1.0

SunStar Laboratories, Inc.

Saniel of Chivy

1,2-Dibromoethane (EDB)

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

Dichlorodifluoromethane

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

LL_15C_082112_01 T121426-02 (Water)

		Reporting							
A	nalyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,3-Dichloropropane	ND	1.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	2.9	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Frichloroethene	3.7	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	1.5	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	4.1	0.50	"	"	"	"	"	"
Toluene	1.7	0.50	"	"	"	"	"	"
Ethylbenzene	0.92	0.50	"	"	"	"	"	"
n,p-Xylene	5.9	1.0	"	"	"	"	"	"
o-Xylene	1.4	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	10	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/28/12 18:03

LL_15C_082112_01 T121426-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds by	EPA Method 8260B

, ordere organic compounds by 2211	112001100 02002								
Ethyl tert-butyl ether	ND	2.0	ug/l	1	2082216	08/22/12	08/24/12	EPA 8260B	
Methyl tert-butyl ether	1.7	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	n	
Surrogate 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate Dibromofluoromethane		89.0 %	81-1	36	"	"	"	"	
Surrogate Toluene-d8		98.9 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

LL_TB_082112 T121426-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
l-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
eis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

LL_TB_082112 T121426-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260I
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
hyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

LL_TB_082112 T121426-03 (Water)

	Repor	ting							
Analyte Res	sult L	imit I	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

TOTAL OT GALLET COLLEGE S. J. ELT II	111001100102002							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1 2082709	08/27/12	08/28/12	EPA 8260B	
Surrogate 4-Bromofluorobenzene		94.4 %	83.5-119	"	"	"	"	
Surrogate Dibromofluoromethane		95.8 %	81-136	"	"	"	"	
Surrogate Toluene-d8		90.2 %	88.8-117	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2082226 - EPA 5030 GC										
Blank (2082226-BLK1)				Prepared:	08/22/12	Analyze	d: 08/24/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	103		"	100		103	72.6-146			
LCS (2082226-BS1)				Prepared:	08/22/12	Analyze	d: 08/24/12			
C6-C12 (GRO)	4330	50	ug/l	5500		78.6	75-125			
Surrogate 4-Bromofluorobenzene	112		"	100		112	72.6-146			
Matrix Spike (2082226-MS1)	So	urce: T12142	26-01	Prepared:	08/22/12	Analyze	d: 08/24/12			
C6-C12 (GRO)	16900	50	ug/l	5500	22600	NR	65-135			QM-05
Surrogate 4-Bromofluorobenzene	100		"	100		100	72.6-146			
Matrix Spike Dup (2082226-MSD1)	So	urce: T12142	26-01	Prepared:	08/22/12	Analyze	d: 08/24/12			
C6-C12 (GRO)	15200	50	ug/l	5500	22600	NR	65-135	10.9	20	QM-05
Surrogate 4-Bromofluorobenzene	105		"	100		105	72.6-146			

SunStar Laboratories, Inc.

Saviel of Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2082216 - EPA 5030	GCMS
--------------------------	------

Blank (2082216-BLK1)				Prepared & Analyzed: 08/22/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

8.44

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2082216-BLK1)				Prepared & Ar	nalyzed: 08/22	/12
p-Isopropyltoluene	ND	1.0	ug/l			
Methylene chloride	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Γetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
,2,4-Trichlorobenzene	ND	1.0	"			
,1,2-Trichloroethane	ND	1.0	"			
,1,1-Trichloroethane	ND	1.0	"			
richloroethene	ND	1.0	"			
richlorofluoromethane	ND	1.0	"			
,2,3-Trichloropropane	ND	1.0	"			
3,5-Trimethylbenzene	ND	1.0	"			
2,4-Trimethylbenzene	ND	1.0	"			
inyl chloride	ND	1.0	"			
enzene	ND	0.50	"			
oluene	ND	0.50	"			
Ethylbenzene	ND	0.50	"			
n,p-Xylene	ND	1.0	"			
-Xylene	ND	0.50	"			
ert-amyl methyl ether	ND	2.0	"			
ert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"			
Surrogate 4-Bromofluorobenzene	7.86		"	8.00	98.2	83.5-11
Surrogate Dibromofluoromethane	7.98		"	8.00	99.8	81-136

8.00

SunStar Laboratories, Inc.

Saviel of Chivy

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

88.8-117

106

RPD

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Keporung Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch 2082216 - EPA 5030 GCMS										
LCS (2082216-BS1)				Prepared	& Analyze	ed: 08/22/	12			
Chlorobenzene	17 3	1.0	ug/l	20.0		86.4	75-125			
1,1-Dichloroethene	19.8	1.0	"	20.0		99.1	75-125			
Trichloroethene	19 5	1.0	"	20.0		97.3	75-125			
Benzene	19 9	0.50	"	20.0		99.6	75-125			
Гoluene	19 3	0.50	"	20.0		96.4	75-125			
Surrogate 4-Bromofluorobenzene	8.64		"	8.00		108	83.5-119			
Surrogate Dibromofluoromethane	8.16		"	8.00		102	81-136			
Surrogate Toluene-d8	8.35		"	8.00		104	88.8-117			
LCS Dup (2082216-BSD1)				Prepared	& Analyze	ed: 08/22/	12			
Chlorobenzene	17 2	1.0	ug/l	20.0		85.8	75-125	0.696	20	
1,1-Dichloroethene	20 3	1.0	"	20.0		102	75-125	2.59	20	
Γrichloroethene	19.0	1.0	"	20.0		94.8	75-125	2.55	20	
Benzene	19.6	0.50	"	20.0		97.8	75-125	1.77	20	
Γoluene	18 3	0.50	"	20.0		91.5	75-125	5.16	20	
Surrogate 4-Bromofluorobenzene	8.36		"	8.00		104	83.5-119			
Surrogate Dibromofluoromethane	8.07		"	8.00		101	81-136			
Surrogate Toluene-d8	8.06		"	8.00		101	88.8-117			
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyzed	d: 08/28/12			
Bromobenzene	ND	1.0	ug/l	•						
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							

SunStar Laboratories, Inc.

Saviel & Chivy

RPD

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyzed	: 08/28/12			
4-Chlorotoluene	ND	1.0	ug/l							
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							
Isopropylbenzene	ND	1.0	"							
p-Isopropyltoluene	ND	1.0	"							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Γrichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyzed	1: 08/28/12			
1,2,3-Trichloropropane	ND	1.0	ug/l							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.66		"	8.00		95.8	83.5-119			
Surrogate Dibromofluoromethane	7.72		"	8.00		96.5	81-136			
Surrogate Toluene-d8	8.09		"	8.00		101	88.8-117			

SunStar Laboratories, Inc.

Saviel & Chivy

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/28/12 18:03

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within

acceptance criteria. The data is acceptable as no negative impact on data is expected.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Savel & Chivy

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F	INC.							e: <u> </u>							Paç	ge:		OF _		_
	714) 508-088	0						lector							Clie	nt Pr	oiect #:	1003-	-001-300	
Project Manager: Jeremy Squire (7	,							ch #:									0,000			
· · · · · · · · · · · · · · · · · · ·	11,001.000																			
														:						
				Σ	B)										STS.					
				(8015 N	(8260 E										containers					# 0
					1										6					Laboratory ID #
	Date		Sample	TPHg	VOCs						l				# E					orat
Sample ID	Sampled	Time	Туре	匠	S										Total		Comme	nts/Prese	ervative	
L-15A-082112-01	8.21.12	1130	8W	X	ĮΧ			_	\bot	\bot					16					01
(L_15C_082112_01	8.21.12	1613	ĢW	X	\times		Ш		_	_				∔—	6	<u> </u>				02
LL_TB_082112			Water	ĮΧ	⊢		\square	+	+		┼		-	-	2	-				63
				┢	⊢		Н	+	+	+	\vdash		+		+	+				+
			<u> </u>	<u> </u>	\vdash		Н	+	+	+-			+	-	 	1				+
					H		\vdash		╅	+	\vdash			+	1					\dagger
					 	-	H		十		T	\vdash			 	 				十
	1						П		十	\top	T					1				
					Π		П		T											-
Relinquished by: (signature)	Date / Ti		Received b	y: (S	ign .	Dat	e / Ti	me)	Ī	otal#	of co	ntair	ers					Notes	3	
Feex F. Soic	8·21·20/2	1630	1.12	4	U.	THE PERSONNEL PROPERTY.	× 8.2	16:30	2 c	hain o	f Cus	tody	seals							
Relinquished by: (signature)	Date / Ti	me	Received b	oy: (S	Sign	Dat	e / Ti	me)		eals ir			γ(Ā)]				
Relinquished by: (signature)	Date / Ti	me	Received b	oy: (S	Sign	Dat	e / Ti	me)		eceive onditio				10	ط.					
								,	Т	urn a	roun	d tin	ie:	Stand	lard	1_				
Sample disposal Instructions: Disposal @ \$2.0	0 each	Return t	o client		Pi	ckup		-												

SAMPLE RECEIVING REVIEW SHEET

BATCH #				
Client Name: Mukex Env. Pr	oject:	Cenc	-0	
Received by: Da	ate/Time Re	ceived:	8.21.12	/ 16:30
Delivered by: Client SunStar Courier GSO	FedEx	Other	,	è.
Total number of coolers received Temp crit	eria = 6°C	> 0°C (no ;	<u>frozen</u> co:	ntainers)
Temperature: cooler #1 ℓ 0.8 °C +/- the CF (-0.2°C) = ℓ 0.	6 °C correc	ted temperatu	ıre	
cooler #2°C +/- the CF (- 0.2°C) =	°С согтес	ted temperati	ıre	
cooler #3°C +/- the CF (- 0.2°C) =	°C correc	ted temperatu	ıre	
Samples outside temp. but received on ice, w/in 6 hours of final	sampling.	⊠Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample		□Yes	□No*	N/A
Sample Containers Intact		∑Yes	□No*	
Sample labels match COC ID's		∑Yes	□No*	
Total number of containers received match COC		∑Yes	□No*	
Proper containers received for analyses requested on COC		∑Yes	□No*	•
Proper preservative indicated on COC/containers for analyses re	quested	∑Yes	□No*	□N/A
Complete shipment received in good condition with correct temp preservatives and within method specified holding times. X	-	-	ibels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Cool	er/Sample Re	view - Initia	als and date	82 8.21.13
Comments:				

30 August 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861 RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 08/23/12 16:02. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shields For Wendy Hsiao Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_16A_082212_01	T121447-01	Water	08/22/12 10:37	08/23/12 16:02
LL_16B_082212_01	T121447-02	Water	08/22/12 12:00	08/23/12 16:02
LL_16C_082212_01	T121447-03	Water	08/22/12 15:45	08/23/12 16:02
LL_17A_082312_01	T121447-04	Water	08/23/12 11:32	08/23/12 16:02
LL_17B_082312_01	T121447-05	Water	08/23/12 12:55	08/23/12 16:02
LL_17C_082312_01	T121447-06	Water	08/23/12 15:00	08/23/12 16:02
LL_TB_082312_01	T121447-07	Water	08/23/12 00:00	08/23/12 16:02

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_16A_082212_01 T121447-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	390	50	ug/l	1	2082403	08/24/12	08/27/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		109 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260l	В						
Bromobenzene	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_16A_082212_01 T121447-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.													
)B													
1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
0.50	"	"	"	"	"	"							
0.50	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
0.50	"	"	"	"	"	"							
0.50	"	"	"	"	"	"							
0.50	"	"	"	"	"	"							
1.0	"	"	"	"	"	"							
0.50	"	"	"	"	"	"							
2.0	"	"	"	"	"	"							
	1.0 1.0 1.0 1.0 0.50 0.50 0.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	1.0 ug/l 1.0 " 1.0 " 1.0 " 1.0 " 0.50 " 0.50 " 1.0 " 1	1.0 ug/l 1 1.0 " " 1.0 " 1.0 " 1.0 " " 1.0 " " 1.0 " " 1.0 " " 1.0 " " 1.0 " " 1.0 " " 1.0 " "	1.0 ug/l 1 2082402 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " 1.0 " " " " " " " " 1.0 " " " " " " " " " 1.0 " " " " " " " " " " 1.0 " " " " " " " " " " " " 1.0 " " " " " " " " " " " " " " " " " " "	1.0 ug/l 1 2082402 08/24/12 1.0 " " " " " " " 1.0 1.0 " " " " " " " 1.0 0.50 " " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " 1.0 1.0 " " " " " " " 1.0 1.0 " " " " " " " 1.0 1.0 " " " " " " " 1.0 1.0 " " " " " " " " 1.0 1.0 " " " " " " " " 1.0 1.0 " " " " " " " " 1.0 1.0 " " " " " " " " 1.0 1.0 " " " " " " " " " 1.0 1.0 " " " " " " " " " " 1.0 1.0 " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " " " "	1.0 ug/l 1 2082402 08/24/12 08/29/12 1.0 " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " " 1.0 0.50 " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " " " 1.0 1.0 " " " " " " " " " " " " " " " " " " "							

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_16A_082212_01 T121447-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Tert-butyl alcohol	ND	10	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"

 1,1,2-trichloro-1,2,2-trifluoroethane
 ND
 5.0
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "</t

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_16B_082212_01 T121447-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C
-----------	-----------	--------------	----	------------	-------

C6-C12 (GRO)	61	50	ug/l	1	2082403	08/24/12	08/27/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		98.5 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EI	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	m .
sec-Butylbenzene	ND	1.0	"	"	"	"	"	m .
tert-Butylbenzene	ND	1.0	"	"	"	"	"	m .
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	m .
Chloromethane	ND	1.0	"	"	"	"	"	m .
2-Chlorotoluene	ND	1.0	"	"	"	"	"	m .
4-Chlorotoluene	ND	1.0	"	"	"	"	"	m .
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	m .
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	m .
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	m .
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	6.0	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	3.5	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_16B_082212_01 T121447-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	r.	ounstai La	1001 atol 1	es, me.					
Volatile Organic Compounds by	EPA Method 8260B	3							
1,3-Dichloropropane	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	8.7	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_16B_082212_01 T121447-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.1 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		86.1 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		93.5 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

LL_16C_082212_01 T121447-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO) 520	50	ug/l	1	2082403	08/24/12	08/27/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene	107 %	72.6	-146	"	"	"	"
Volatile Organic Compounds by EPA Method 826	0B						
Bromobenzene ND	25	ug/l	25	2082402	08/24/12	08/29/12	EPA 8260B
Bromochloromethane ND	25	"	"	"	"	"	"
Bromodichloromethane ND	25	"	"	"	"	"	"
Bromoform ND	25	"	"	"	"	"	"
Bromomethane ND	25	"	"	"	"	"	"
n-Butylbenzene ND	25	"	"	"	"	"	"
sec-Butylbenzene ND	25	"	"	"	"	"	"
tert-Butylbenzene ND	25	"	"	"	"	"	"
Carbon tetrachloride ND	12	"	"	"	"	"	"
Chlorobenzene ND	25	"	"	"	"	"	"
Chloroethane ND	25	"	"	"	"	"	"
Chloroform ND	25	"	"	"	"	"	"
Chloromethane ND	25	"	"	"	"	"	"
2-Chlorotoluene ND	25	"	"	"	"	"	"
4-Chlorotoluene ND	25	"	"	"	"	"	"
Dibromochloromethane ND	25	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane ND	25	"	"	"	"	"	"
1,2-Dibromoethane (EDB) ND	25	"	"	"	"	"	"
Dibromomethane ND	25	"	"	"	"	"	"
1,2-Dichlorobenzene ND	25	"	"	"	"	"	"
1,3-Dichlorobenzene ND	25	"	"	"	"	"	"
1,4-Dichlorobenzene ND	25	"	"	"	"	"	"
Dichlorodifluoromethane ND	12	"	"	"	"	"	"
1,1-Dichloroethane ND	25	"	"	"	"	"	11
1,2-Dichloroethane ND	12	"	"	"	"	"	11
1,1-Dichloroethene ND	25	"	"	"	"	"	"
cis-1,2-Dichloroethene 42	25	"	"	"	"	"	"
trans-1,2-Dichloroethene ND	25	"	"	"	"	"	11
1,2-Dichloropropane ND	25	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_16C_082212_01 T121447-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	50	iliStai La	iboi atoi i	ies, mc.					
Volatile Organic Compounds by I	EPA Method 8260B								
1,3-Dichloropropane	ND	25	ug/l	25	2082402	08/24/12	08/29/12	EPA 8260B	
2,2-Dichloropropane	ND	25	"	"	"	"	"	"	
1,1-Dichloropropene	ND	25	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	12	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	12	"	"	"	"	"	"	
Hexachlorobutadiene	ND	25	"	"	"	"	"	"	
Isopropylbenzene	ND	25	"	"	"	"	"	"	
p-Isopropyltoluene	ND	25	"	"	"	"	"	"	
Methylene chloride	ND	25	"	"	"	"	"	"	
Naphthalene	ND	25	"	"	"	"	"	"	
n-Propylbenzene	ND	25	"	"	"	"	"	"	
Styrene	ND	25	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	25	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	25	"	"	"	"	"	"	
Tetrachloroethene	ND	25	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	25	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	25	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	25	"	"	"	"	"	"	
Trichloroethene	ND	25	"	"	"	"	"	"	
Trichlorofluoromethane	ND	25	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	25	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	25	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	25	"	"	"	"	"	"	
Vinyl chloride	ND	25	"	"	"	"	"	"	
Benzene	22	12	"	"	"	"	"	"	
Toluene	ND	12	"	"	"	"	"	"	
Ethylbenzene	ND	12	"	"	"	"	"	"	
m,p-Xylene	ND	25	"	"	"	"	"	"	
o-Xylene	ND	12	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	50	"	"	"	"	"	"	
Tert-butyl alcohol	ND	250	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Project: Cenco Murex 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

LL_16C_082212_01 T121447-03 (Water)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Reporting							

		SunStar La	borator	ies, Inc.					
Volatile Organic Compounds by EPA	Method 8260	В							
Di-isopropyl ether	ND	50	ug/l	25	2082402	08/24/12	08/29/12	EPA 8260B	
Ethyl tert-butyl ether	ND	50	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	25	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	120	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.4 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		80.0 %	81-1	36	"	"	"	"	S-GC
Surrogate: Toluene-d8		92.6 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

LL_17A_082312_01 T121447-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C
-----------	-----------	--------------	----	------------	-------

C6-C12 (GRO)	ND	50	ug/l	1	2082403	08/24/12	08/27/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		93.2 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	2.9	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_17A_082312_01 T121447-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_17A_082312_01 T121447-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	A Method 8260B								
Tert-butyl alcohol	12	10	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.1 %	83.5-	119	"	"	"	"	

81-136

88.8-117

85.4 % 92.2 %

SunStar Laboratories, Inc.

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

LL_17B_082312_01 T121447-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2082403 08/24/12

08/27/12

EPA 8015C

50

ND

Purgeable	Petroleum	Hydrocarbons	by	/ EPA	8015C
-----------	-----------	--------------	----	-------	-------

C6-C12 (GRO)

C0-C12 (GRO)	ND	50	ug/1	-	2002-03	00/24/12	00/2//12	LI A 0015C
Surrogate: 4-Bromofluorobenzene		110 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_17B_082312_01 T121447-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	ь	unstai La	1001 atol 1	es, IIIC.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloropropane	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_17B_082312_01 T121447-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

				,					
Volatile Organic Compounds by EPA	A Method 8260B	}							
Tert-butyl alcohol	ND	10	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	11	
Surrogate: 4-Bromofluorobenzene		90.9 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		82.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		95.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_17C_082312_01 T121447-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2082403 08/24/12

08/27/12

EPA 8015C

50

ND

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C
-----------	-----------	--------------	----	------------	-------

C6-C12 (GRO)

C0-C12 (GRO)	ND	50	ug/1	-		00/24/12	00/2//12	LI A 6015C	
Surrogate: 4-Bromofluorobenzene		97.3 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260l	В							
Bromobenzene	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_17C_082312_01 T121447-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
lexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_17C_082312_01 T121447-06 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	i	SunStar La	iboratori	es, Inc.										
Volatile Organic Compounds by EPA	Volatile Organic Compounds by EPA Method 8260B													
Tert-butyl alcohol	ND	10	ug/l	1	2082402	08/24/12	08/29/12	EPA 8260B						
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"						
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"						
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"						
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"						
Surrogate: 4-Bromofluorobenzene		93.4 %	83.5-	110	"	"	"	"						
·								_						
Surrogate: Dibromofluoromethane		85.9 %	81-1	36	"	"	"	"						
Surrogate: Toluene-d8		95.8 %	88.8-	117	"	"	"	"						

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

LL_TB_082312_01 T121447-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_TB_082312_01 T121447-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

LL_TB_082312_01 T121447-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2082709	08/27/12	08/28/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		90.5 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		102 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		80.8 %	88.8-117	7	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/30/12 14:06

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2082403 - EPA 5030 GC										
Blank (2082403-BLK1)				Prepared:	08/24/12	Analyze	d: 08/27/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	98.5		"	100		98.5	72.6-146			
LCS (2082403-BS1)				Prepared:	08/24/12	Analyze	d: 08/27/12			
C6-C12 (GRO)	5640	50	ug/l	5500		103	75-125			
Surrogate 4-Bromofluorobenzene	124		"	100		124	72.6-146			
Matrix Spike (2082403-MS1)	Sou	rce: T12144	7-04	Prepared:	08/24/12	Analyze	d: 08/27/12			
C6-C12 (GRO)	5170	50	ug/l	5500	43.1	93.2	65-135			
Surrogate 4-Bromofluorobenzene	110		"	100		110	72.6-146			
Matrix Spike Dup (2082403-MSD1)	Sou	rce: T12144	7-04	Prepared:	08/24/12	Analyze	d: 08/27/12			
C6-C12 (GRO)	5280	50	ug/l	5500	43.1	95.1	65-135	2.06	20	
Surrogate 4-Bromofluorobenzene	119		"	100		119	72.6-146			

SunStar Laboratories, Inc.

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2082402 - EPA 5030 GCMS										
Blank (2082402-BLK1)				Prepared:	08/24/12	Analyzed	: 08/28/12			
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							

SunStar Laboratories, Inc.

Hexachlorobutadiene

Isopropylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

ND

ND

1.0

1.0

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2082402 - EPA 5030 GCMS										
Blank (2082402-BLK1)				Prepared:	08/24/12	Analyzed	: 08/28/12			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.51		"	8.00		93.9	83.5-119			
Surrogate Dibromofluoromethane	6.78		"	8.00		84.8	81-136			
Surrogate Toluene-d8	7.20		"	8.00		90.0	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2082402 - EPA 5030 GCMS										
LCS (2082402-BS1)				Prepared:	08/24/12	Analyzed	1: 08/29/12			
Chlorobenzene	16.3	1.0	ug/l	20.0		81.6	75-125			
1,1-Dichloroethene	17.5	1.0	"	20.0		87.4	75-125			
Trichloroethene	16.7	1.0	"	20.0		83.6	75-125			
Benzene	16.5	0.50	"	20.0		82.3	75-125			
Toluene	17.6	0.50	"	20.0		88.0	75-125			
Surrogate 4-Bromofluorobenzene	7.51		"	8.00		93.9	83.5-119			
Surrogate Dibromofluoromethane	8.93		"	8.00		112	81-136			
Surrogate Toluene-d8	8.27		"	8.00		103	88.8-117			
LCS Dup (2082402-BSD1)				Prepared:	08/24/12	Analyzed	1: 08/29/12			
Chlorobenzene	17.1	1.0	ug/l	20.0		85.5	75-125	4.73	20	
1,1-Dichloroethene	17.3	1.0	"	20.0		86.6	75-125	0.862	20	
Trichloroethene	17.0	1.0	"	20.0		84.8	75-125	1.37	20	
Benzene	17.6	0.50	"	20.0		88.2	75-125	6.86	20	
Toluene	19.2	0.50	"	20.0		96.0	75-125	8.75	20	
Surrogate 4-Bromofluorobenzene	7.40		"	8.00		92.5	83.5-119			
Surrogate Dibromofluoromethane	8.82		"	8.00		110	81-136			
Surrogate Toluene-d8	8.57		"	8.00		107	88.8-117			
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyzed	1: 08/28/12			
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	**							

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

Murex Project: Cenco

Result

ND

ND

1.0

1.0

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Analyte	Result	Lillit	Units	Levei	Kesuit	/0KEC	Lillits	KFD	LIIIII	INOICS
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyzed	: 08/28/12			
-Chlorotoluene	ND	1.0	ug/l							
Dibromochloromethane	ND	1.0	"							
,2-Dibromo-3-chloropropane	ND	1.0	"							
,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
,2-Dichlorobenzene	ND	1.0	"							
,3-Dichlorobenzene	ND	1.0	"							
,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
,1-Dichloroethane	ND	1.0	"							
,2-Dichloroethane	ND	0.50	"							
,1-Dichloroethene	ND	1.0	"							
is-1,2-Dichloroethene	ND	1.0	"							
rans-1,2-Dichloroethene	ND	1.0	"							
,2-Dichloropropane	ND	1.0	"							
,3-Dichloropropane	ND	1.0	"							
,2-Dichloropropane	ND	1.0	"							
,1-Dichloropropene	ND	1.0	"							
is-1,3-Dichloropropene	ND	0.50	"							
rans-1,3-Dichloropropene	ND	0.50	"							
Iexachlorobutadiene	ND	1.0	"							
sopropylbenzene	ND	1.0	"							
-Isopropyltoluene	ND	1.0	"							
Aethylene chloride	ND	1.0	"							
Vaphthalene	ND	1.0	"							
-Propylbenzene	ND	1.0	"							
tyrene	ND	1.0	"							
,1,2,2-Tetrachloroethane	ND	1.0	"							
,1,1,2-Tetrachloroethane	ND	1.0	"							
etrachloroethene	ND	1.0	"							
,2,3-Trichlorobenzene	ND	1.0	"							
,2,4-Trichlorobenzene	ND	1.0	"							
,1,2-Trichloroethane	ND	1.0	"							
,1,1-Trichloroethane	ND	1.0	"							

SunStar Laboratories, Inc.

Trichloroethene

Trichlorofluoromethane

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2082709 - EPA 5030 GCMS										
Blank (2082709-BLK1)				Prepared:	08/27/12	Analyze	d: 08/28/12			
1,2,3-Trichloropropane	ND	1.0	ug/l							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.80		"	8.00		97.5	83.5-119			
Surrogate Dibromofluoromethane	3.80		"	8.00		47.5	81-136			S-GC
Surrogate Toluene-d8	6.57		"	8.00		82.1	88.8-117			S-GC
LCS (2082709-BS1)				Prepared:	08/27/12	Analyze	d: 08/28/12			
Chlorobenzene	16.2	1.0	ug/l	20.0		80.8	75-125			
1,1-Dichloroethene	17.6	1.0	"	20.0		88.0	75-125			
Trichloroethene	21.1	1.0	"	20.0		106	75-125			
Benzene	16.0	0.50	"	20.0		80.1	75-125			
Toluene	16.2	0.50	"	20.0		80.9	75-125			
Surrogate 4-Bromofluorobenzene	7.91		"	8.00		98.9	83.5-119			
Surrogate Dibromofluoromethane	8.29		"	8.00		104	81-136			
Surrogate Toluene-d8	8.21		"	8.00		103	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2082709 - EPA 5030 GCMS										
LCS Dup (2082709-BSD1)				Prepared:	08/27/12	Analyzed	1: 08/28/12			
Chlorobenzene	16.0	1.0	ug/l	20.0		80.0	75-125	0.871	20	
1,1-Dichloroethene	15.2	1.0	"	20.0		76.1	75-125	14.4	20	
Trichloroethene	21.0	1.0	"	20.0		105	75-125	0.285	20	
Benzene	15.7	0.50	"	20.0		78.4	75-125	2.08	20	
Toluene	17.1	0.50	"	20.0		85.6	75-125	5.65	20	
Surrogate 4-Bromofluorobenzene	7.68		"	8.00		96.0	83.5-119			
Surrogate Dibromofluoromethane	8.03		"	8.00		100	81-136			
Surrogate Toluene-d8	8.10		"	8.00		101	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/30/12 14:06

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each ____

Chain of Custody Record

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (714) 508-0800						Pr	ate: 8 oject N	lame	e:	CEN	ICO				ge:	OF	1 200	_
Project Manager: Jeremy Squire (7							atch #:_					-			nt Project # = #:			- ".
														S				
		<u> </u>		g (8015 M)	s (8260 B)									# of containers				Laboratory ID #
Sample ID	Date Sampled	Time	Sample Type	TPHg	VOCs									Total #	Comm	ents/Preserva	ative	Labora
LL_16A_082212_01	8.22.12	10:37	GW	X	X									6				01
LL-16B-08ZZIZ-01	8.22.12	2:00	GW	X	X									6				02
LL_16C_082212_01	8.22.12	15:45	GW	X	X									6				03
4_17A_082312_01	8.23.12	11:32	GW	X	X									6				०५
4. 178.082312.01	8.23.12	12:55	GW	X	X				ľ					6				05
LL_17C_082312_01	8.23.12		GW	X	X	T		T			T			6	7			0
LL_TB_082312			Water	X										2				07
				+		+-	+	+	\vdash	$\vdash +$	十	+	1.	†				+
Relinquished by: (signature)	Date / Ti	me 602	Received b	y: (S			Time) 23/12			of cont						Notes		
Refinquished by: (signature)	Date / Ti		Received b	y: (S	Sign / C	ate /	Time)	Sea	als int	act? Y	/N/N		-	<u>/(A-</u>	1			
Relinquished by: (signature)	Date / Ti	me	Received b	y: (S	ign / C	Date /	Time)	-		/cold	time		Stand		26			

Pickup ____

Return to client ____

SAMPLE RECEIVING REVIEW SHEET

Delivered by: Client SunStar Courier GSO FedEx Other Total number of coolers received Temp criteria = 6°C > 0°C (no Temperature: cooler #1 2.2 °C +/- the CF (-0.2°C) = 2.0 °C corrected temperat cooler #2 °C +/- the CF (-0.2°C) = °C corrected temperat cooler #3 °C +/- the CF (-0.2°C) = °C corrected temperat cooler #3 °C +/- the CF (-0.2°C) = °C corrected temperat Samples outside temp. but received on ice, w/in 6 hours of final sampling. Yes Custody Seals Intact on Cooler/Sample Yes Sample Containers Intact Yes Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, I	
Delivered by: Client SunStar Courier GSO FedEx Other Total number of coolers received Temp criteria = 6°C > 0°C (no Temperature: cooler #1 2 2 2 °C +/- the CF (-0.2°C) = 2.0 °C corrected temperate cooler #2 °C +/- the CF (-0.2°C) = °C corrected temperate cooler #3 °C +/- the CF (-0.2°C) = °C corrected t	8/23/12 1602
Temp criteria = 6°C > 0°C (no Temperature: cooler #1 2 · 2 · °C +/- the CF (- 0.2°C) = 2 · 0 °C corrected temperat cooler #2 °C +/- the CF (- 0.2°C) = °C corrected temperat cooler #3 °C +/- the CF (- 0.2°C) = °C corrected temperat cooler #3 °C +/- the CF (- 0.2°C) = °C corrected temperat Samples outside temp. but received on ice, w/in 6 hours of final sampling. Yes Custody Seals Intact on Cooler/Sample	-
Temperature: cooler #1 2.2 °C +/- the CF (-0.2°C) = 2.0 °C corrected temperate cooler #2 °C +/- the CF (-0.2°C) = °C corrected temperate cooler #3 °C +/- the CF (-0.2°C) = °C cooler #3 °C +/- the CF (-0.2°C) = °C cooler #3 °C +/- the CF (-0.2°C) = °C cooler #3 °C +/- the CF (-0.2°C) = °C cooler #3 °C +/- the CF (-0.2°C) = °C cooler #3 °C +/- the CF (-0.2°C) = °C cooler #3 °C +/- the CF (-0.2°C	ЭГ
cooler #2°C +/- the CF (- 0.2°C) =°C corrected temperate cooler #3°C +/- the CF (- 0.2°C) =°C corrected temperate Samples outside temp. but received on ice, w/in 6 hours of final sampling. Yes Custody Seals Intact on Cooler/Sample	o <u>frozen</u> containers)
cooler #3°C +/- the CF (- 0.2°C) =°C corrected temperated Samples outside temp. but received on ice, w/in 6 hours of final sampling. Yes Custody Seals Intact on Cooler/Sample Sample Containers Intact Yes Sample labels match COC ID's Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, I	ature
Samples outside temp. but received on ice, w/in 6 hours of final sampling. Yes Custody Seals Intact on Cooler/Sample Sample Containers Intact Yes Sample labels match COC ID's Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, I	ature
Custody Seals Intact on Cooler/Sample Sample Containers Intact Sample labels match COC ID's Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, I	ature
Sample Containers Intact Sample labels match COC ID's Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, I	□No* □N/A
Sample labels match COC ID's Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, I	□No* ⊠N/A
Total number of containers received match COC Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Complete shipment received in good condition with correct temperatures, containers, I	□No*
Proper containers received for analyses requested on COC Proper preservative indicated on COC/containers for analyses requested Yes Complete shipment received in good condition with correct temperatures, containers, l	□No*
Proper preservative indicated on COC/containers for analyses requested Yes Complete shipment received in good condition with correct temperatures, containers, l	□No*
Complete shipment received in good condition with correct temperatures, containers, l	□No*
	□No* □N/A
	labels, volumes
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample Review - Initia	itials and date8
Comments:	

31 August 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861 RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 08/27/12 16:09. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shields For Wendy Hsiao Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_107A_082412_01	T121471-01	Water	08/24/12 15:23	08/27/12 16:09
LL_106A_082412_01	T121471-02	Water	08/24/12 16:30	08/27/12 16:09
LL_W4_082712_01	T121471-03	Water	08/27/12 12:30	08/27/12 16:09
LL_W1_082712_01	T121471-04	Water	08/27/12 14:38	08/27/12 16:09
LL_104A_082712_01	T121471-05	Water	08/27/12 15:53	08/27/12 16:09
LL_TB_082712	T121471-06	Water	08/27/12 00:00	08/27/12 16:09

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_107A_082412_01 T121471-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	720	50	ug/l	1	2082822	08/28/12	08/29/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		115 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260	В						
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	1.9	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
ris-1,2-Dichloroethene	3.4	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	1.8	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

LL_107A_082412_01 T121471-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.										
Volatile Organic Compounds by										
,2-Dichloropropane	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B		
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
sopropylbenzene	10	1.0	"	"	"	"	"	"		
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
-Propylbenzene	5.7	1.0	"	"	"	"	"	"		
tyrene	ND	1.0	"	"	"	"	"	"		
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
etrachloroethene	ND	1.0	"	"	"	"	"	"		
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
richloroethene	2.5	1.0	"	"	"	"	"	"		
richlorofluoromethane	ND	1.0	"	"	"	"	"	"		
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
inyl chloride	ND	1.0	"	"	"	"	"	"		
enzene	1.0	0.50	"	"	"	"	"	"		
oluene	ND	0.50	"	"	"	"	"	"		
thylbenzene	ND	0.50	"	"	"	"	"	"		
n,p-Xylene	ND	1.0	"	"	"	"	"	"		
-Xylene	ND	0.50	"	"	"	"	"	"		
Fert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_107A_082412_01 T121471-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Tert-butyl alcohol	11	10	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	**
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"
(CFC 113)								

 CFC 113)

 Surrogate: 4-Bromofluorobenzene
 98.2 % 83.5-119 " " " "

 Surrogate: Dibromofluoromethane
 95.9 % 81-136 " " " " "

 Surrogate: Toluene-d8
 106 % 88.8-117 " " " " "

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

$LL_106A_082412_01$ T121471-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA	8015C
-----------	-----------	--------------	----	------------	-------

C6-C12 (GRO)	470	50	ug/l	1	2082822	08/28/12	08/29/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		126 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA M	lethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	2.8	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_106A_082412_01 T121471-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.										
Volatile Organic Compounds by I	EPA Method 8260B	ı								
1,3-Dichloropropane	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	17	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
n-Propylbenzene	12	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	11	1.0	"	"	"	"	"	"		
Benzene	4.8	0.50	"	"	"	"	"	"		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		
Tert-butyl alcohol	ND	10	"	"	"	"	"	m .		

SunStar Laboratories, Inc.

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

LL_106A_082412_01 T121471-02 (Water)

Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B							
Di-isopropyl ether	ND	2.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		96.1 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 08/31/12 15:34

LL_W4_082712_01 T121471-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgoshla	Detroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	i myurocarbons	DVEPA	90120

C6-C12 (GRO)	910	50	ug/l	1	2082822	08/28/12	08/29/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		113 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA M	1ethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	1.1	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	**
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_W4_082712_01 T121471-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	St	ınstar La	aboratori	es, inc.					
Volatile Organic Compounds by I	EPA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	11	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	4.6	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	2.8	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	24	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

LL_W4_082712_01 T121471-03 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EP	A Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	1.9	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		87.5 %	81-1	36	"	"	"	"	

88.8-117

101 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

EPA 8015C

Murex Project: Cenco

180

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_W1_082712_01 T121471-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2082822

08/28/12

08/29/12

50

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
rurgeame	remoleum	i n vui ocai boiis	DVEFA	OUISC

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		111 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	11

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_W1_082712_01 T121471-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ND 1.0 ug/l 1 2083023 08/30/12 08/30/12 EPA 8260B 1,3-Dichloropropane ND 1.0 " " " " " " " " "	
1,3-Dichloropropane ND 1.0 " <th></th>	
2,2-Dichloropropane	
1,1-Dichloropropene ND 1.0 " <td></td>	
cis-1,3-Dichloropropene ND 0.50 "<	
trans-1,3-Dichloropropene ND 0.50 "	
Hexachlorobutadiene ND 1.0 "	
Isopropylbenzene ND 1.0 "	
p-Isopropyltoluene ND 1.0 "	
Methylene chloride ND 1.0 "	
Naphthalene ND 1.0 "	
n-Propylbenzene ND 1.0 " " " " " " " " " " " Styrene ND 1.0 " " " " " " " " " " " " " " " " " " "	
Styrene ND 1.0 " " " " "	
·	
1,1,2,2-Tetrachloroethane ND 1.0 " " " " " "	
1,1,1,2-Tetrachloroethane ND 1.0 " " " " " "	
Tetrachloroethene ND 1.0 " " " " " "	
1,2,3-Trichlorobenzene ND 1.0 " " " " " "	
1,2,4-Trichlorobenzene ND 1.0 " " " " " "	
1,1,2-Trichloroethane ND 1.0 " " " " " "	
1,1,1-Trichloroethane ND 1.0 " " " " " "	
Trichloroethene ND 1.0 " " " " "	
Trichlorofluoromethane ND 1.0 " " " " " "	
1,2,3-Trichloropropane ND 1.0 " " " " " "	
1,3,5-Trimethylbenzene ND 1.0 " " " " " "	
1,2,4-Trimethylbenzene ND 1.0 " " " " " "	
Vinyl chloride ND 1.0 " " " " "	
Benzene 9.1 0.50 " " " " "	
Toluene ND 0.50 " " " " "	
Ethylbenzene ND 0.50 " " " " " "	
m,p-Xylene ND 1.0 " " " " "	
o-Xylene ND 0.50 " " " " "	
Tert-amyl methyl ether ND 2.0 " " " " " " "	

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

LL_W1_082712_01 T121471-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA	Method 8260B								
Tert-butyl alcohol	ND	10	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	11	
Surrogate: 4-Bromofluorobenzene		98.1 %	83.5-	119	"	"	"	"	

Surrogate: Dibromofluoromethane 88.8 % 81-136 " " " " "
Surrogate: Toluene-d8 98.4 % 88.8-117 " " " "

SunStar Laboratories, Inc.

Murex Project: Cenco

ND

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_104A_082712_01 T121471-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2082822 08/28/12

08/29/12

EPA 8015C

50

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)

C0-C12 (GRO)	ND	50	ug/1		2002022	00/20/12	00/27/12	LI A 0015C
Surrogate: 4-Bromofluorobenzene		108 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_104A_082712_01 T121471-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	5	unstar L	100141011	cs, inc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloropropane	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	3.6	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_104A_082712_01 T121471-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	sunstar La	poratori	es, mc.									
Volatile Organic Compounds by EPA Method 8260B													
Tert-butyl alcohol	ND	10	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B					
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"					
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		98.2 %	83.5-	119	"	"	"	"					
Surrogate: Dibromofluoromethane		89.6 %	81-1.	36	"	"	"	"					
Surrogate: Toluene-d8		97.1 %	88.8-	117	"	"	"	"					

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_TB_082712 T121471-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

LL_TB_082712 T121471-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

LL_TB_082712 T121471-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1 2083023	08/30/12	08/30/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		92.2 %	83.5-119	"	"	"	"	
Surrogate: Dibromofluoromethane		88.0 %	81-136	"	"	"	"	
Surrogate: Toluene-d8		99.2 %	88.8-117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2082822 - EPA 5030 GC										
Blank (2082822-BLK1)				Prepared:	08/28/12	Analyze	d: 08/29/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	108		"	100		108	72.6-146			
LCS (2082822-BS1)				Prepared:	08/28/12	Analyze	d: 08/29/12			
C6-C12 (GRO)	5580	50	ug/l	5500		101	75-125			
Surrogate 4-Bromofluorobenzene	131		"	100		131	72.6-146			
Matrix Spike (2082822-MS1)	Sou	rce: T12147	1-01	Prepared:	08/28/12	Analyze	d: 08/29/12			
C6-C12 (GRO)	6280	50	ug/l	5500	718	101	65-135			
Surrogate 4-Bromofluorobenzene	141		"	100		141	72.6-146			
Matrix Spike Dup (2082822-MSD1)	Source: T121471-01		Prepared: 08/28/12 Analyzed: 08/29/12							
C6-C12 (GRO)	5790	50	ug/l	5500	718	92.3	65-135	8.09	20	
Surrogate 4-Bromofluorobenzene	123		"	100		123	72.6-146			

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2083023-BLK1)				Prepared & Analyzed: 08/30/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	

1.0

1.0

0.50

0.50

1.0

1.0

ND

ND

ND

ND

ND

ND

SunStar Laboratories, Inc.

2,2-Dichloropropane

1,1-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

RPD

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2083023 - EPA 5030 GCMS										
Blank (2083023-BLK1)				Prepared	& Analyze	ed: 08/30/	12			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
,2,3-Trichloropropane	ND	1.0	"							
,3,5-Trimethylbenzene	ND	1.0	"							
,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Coluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
n,p-Xylene	ND	1.0	"							
-Xylene	ND	0.50	"							
Fert-amyl methyl ether	ND	2.0	"							
Fert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
,1,2-trichloro-1,2,2-trifluoroethane (CFC 13)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.03		"	8.00		87.9	83.5-119			
Surrogate Dibromofluoromethane	7.32		"	8.00		91.5	81-136			
Surrogate Toluene-d8	8.12		"	8.00		102	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 08/31/12 15:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2083023 - EPA 5030 GCMS	_			-			_		_	
LCS (2083023-BS1)				Prepared:	08/30/12	Analyze	d: 08/31/12			
Chlorobenzene	17.5	1.0	ug/l	20.0		87.4	75-125			
1,1-Dichloroethene	17.6	1.0	"	20.0		87.8	75-125			
Trichloroethene	17.8	1.0	"	20.0		89.2	75-125			
Benzene	17.2	0.50	"	20.0		86.2	75-125			
Toluene	17.6	0.50	"	20.0		88.0	75-125			
Surrogate 4-Bromofluorobenzene	7.62		"	8.00		95.2	83.5-119			
Surrogate Dibromofluoromethane	7.17		"	8.00		89.6	81-136			
Surrogate Toluene-d8	7.89		"	8.00		98.6	88.8-117			
Matrix Spike (2083023-MS1)	Source: T121471-05			Prepared:	08/30/12	Analyze	d: 08/31/12			
Chlorobenzene	17.6	1.0	ug/l	20.0	ND	87.8	75-125			
1,1-Dichloroethene	18.8	1.0	"	20.0	ND	93.9	75-125			
Trichloroethene	16.5	1.0	"	20.0	ND	82.4	75-125			
Benzene	17.8	0.50	"	20.0	ND	89.0	75-125			
Toluene	18.0	0.50	"	20.0	ND	90.2	75-125			
Surrogate 4-Bromofluorobenzene	7.68		"	8.00		96.0	83.5-119			
Surrogate Dibromofluoromethane	7.09		"	8.00		88.6	81-136			
Surrogate Toluene-d8	7.87		"	8.00		98.4	88.8-117			
Matrix Spike Dup (2083023-MSD1)	So	urce: T12147	1-05	Prepared:	08/30/12	Analyze	d: 08/31/12			
Chlorobenzene	18.0	1.0	ug/l	20.0	ND	90.2	75-125	2.75	20	
1,1-Dichloroethene	18.5	1.0	"	20.0	ND	92.6	75-125	1.39	20	
Trichloroethene	16.7	1.0	"	20.0	ND	83.4	75-125	1.15	20	
Benzene	17.8	0.50	"	20.0	ND	89.0	75-125	0.00	20	
Toluene	18.5	0.50	"	20.0	ND	92.4	75-125	2.46	20	
Surrogate 4-Bromofluorobenzene	7.52		"	8.00		94.0	83.5-119			
Surrogate Dibromofluoromethane	6.91		"	8.00		86.4	81-136			
Surrogate Toluene-d8	8.01		"	8.00		100	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire08/31/12 15:34

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Phone: (714) 508-0800 Fax: (714) 508-0880 Project Manager: Jeremy Squire (714) 604-5836 Batch #: T12.I471 EDF #: Sample ID Sample ID Sample ID Sample Time Type Sample ID Sample		ent: MUREX ENVIRONMENTAL INC.												Date: 8 27 2012 Page: 1 OF						
Sample ID Sampled Time Sample PA O O O O O O O O O	. , ,	•					С	ollect	tor:	Fra	ane S	osic				•	1003-001-300	_		
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Turn around time: Standard	Sample ID <u>LL_IOFA_082412_01</u> <u>LL_IO6A_082412_01</u> <u>LL_WI_082412_01</u> <u>LL_WI_082412_01</u> <u>LL_IO4A_082412_01</u>	Date Sampled 8.24.12 8.24.12 8.24.12 8.27.12	Time /523 /630 /230 /438	GW GW GW GW GW	(8015	(8260									OOO Total # of containers		ts/Preservative	50 PA		
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Received by: (Sign / Date / Time) Received good condition/cold Turn around time: Standard																				
Relinquished by: (signature) Date / Time Received by: (Sign / Date / Time) Turn around time: Standard	F. Seic	8.27.12	1609			_ '	- 8	271	2	Sea	in of C	ustod ct? Y/I	y seals	7	<u> </u>		Notes			
	Relinquished by: (signature) Date / Time Receive Sample disposal Instructions: Disposal @ \$2.00 each Return to client				oy: (S								<u> </u>							

SAMPLE RECEIVING REVIEW SHEET

BATCH #	
Client Name: Project:	Cenco
Received by: Date/Time R	deceived: 8/27/12 1609
Delivered by: Client SunStar Courier GSO FedEx	Other
Total number of coolers received Temp criteria = 6°C	C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1 $\underline{4.6}$ °C +/- the CF (-0.2°C) = $\underline{4.4}$ °C corre	ected temperature
cooler #2°C +/- the CF (- 0.2°C) =°C corre	ected temperature
cooler #3°C +/- the CF (- 0.2°C) =°C corre	ected temperature
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	⊠Yes □No* □N/A
Custody Seals Intact on Cooler/Sample	□Yes □No* ⊠N/A
Sample Containers Intact	Yes \(\sum_{No*}
Sample labels match COC ID's	∑Yes □No*
Total number of containers received match COC	∑Yes □No*
Proper containers received for analyses requested on COC	∑Yes □No*
Proper preservative indicated on COC/containers for analyses requested	Yes No* N/A
Complete shipment received in good condition with correct temperatures, or preservatives and within method specified holding times. Yes No	
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample R	Review - Initials and date // 8/23
Comments:	

05 September 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861 RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 08/28/12 16:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shields For Wendy Hsiao Project Manager

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/05/12 16:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W9_082812_01	T121487-01	Water	08/28/12 10:00	08/28/12 16:20
LL_W10_082812_01	T121487-02	Water	08/28/12 12:47	08/28/12 16:20
LL_W11_082812_01	T121487-03	Water	08/28/12 15:26	08/28/12 16:20
LL_TB_082812	T121487-04	Water	08/28/12 00:00	08/28/12 16:20

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

LL_W9_082812_01 T121487-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	70	50	ug/l	1	2083109	08/31/12	09/05/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		110 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA	Method 82601	3						
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	.,	,,	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

LL_W9_082812_01 T121487-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B 1,2-Dichloropropane ND 1,3-Dichloropropane ND 2,2 Dichloropropane ND	1.0 1.0 1.0 1.0	ug/l	1	2083023	08/30/12	08/30/12	EDA 92/0D
1,3-Dichloropropane ND	1.0 1.0	"		2083023	08/30/12	08/30/12	EDA 9260D
* *	1.0					00/30/12	EPA 8260B
2.2 Diablamanana			"	"	"	"	"
2,2-Dichloropropane ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene ND	1.0	"	"	"	"	"	"
Isopropylbenzene ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene ND	1.0	"	"	"	"	"	"
Methylene chloride ND	1.0	"	"	"	"	"	"
Naphthalene ND	1.0	"	"	"	"	"	"
n-Propylbenzene ND	1.0	"	"	"	"	"	"
Styrene ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane ND	1.0	"	"	"	"	"	"
Tetrachloroethene ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane ND	1.0	"	"	"	"	"	"
Trichloroethene ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene ND	1.0	"	"	"	"	"	"
Vinyl chloride ND	1.0	"	"	"	"	"	"
Benzene ND	0.50	"	"	"	"	"	"
Toluene ND	0.50	"	"	"	"	"	"
Ethylbenzene ND	0.50	"	"	"	"	"	"
m,p-Xylene ND	1.0	"	"	"	"	"	"
o-Xylene ND	0.50	"	"	"	"	"	11
Tert-amyl methyl ether ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

LL_W9_082812_01 T121487-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

volatile Organic Compounds by	EPA Method 8260B				
Tert-butyl alcohol	ND	10	ug/l	1	2083023

Tert-butyl alcohol	ND	10	ug/l	1	2083023	08/30/12	08/30/12	EPA 8260B	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.9 %	83.5-	119	"	"	"	"	_
Surrogate: Dibromofluoromethane		98.1 %	81-1.	36	"	"	"	"	
Surrogate: Toluene-d8		103 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

LL_W10_082812_01 T121487-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	りいしつし

Surrogate: 4-Bromofluorobenzene								EPA 8015C
		125 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA M	Iethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.9	1.0	"	"	"	"	"	"
sec-Butylbenzene	2.9	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	11
Dibromochloromethane	ND	1.0	"	"	"	"	"	11
1,2-Dibromo-3-chloropropane	3.2	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	2.8	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

LL_W10_082812_01 T121487-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, Inc.									
Volatile Organic Compounds by El	PA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	17	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	270	100	"	100	"	"	"	"	
n-Propylbenzene	22	1.0	"	1	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	2.8	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	27	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	3100	50	"	100	"	"	"	"	
Toluene	4.3	0.50	"	1	"	"	"	"	
Ethylbenzene	160	50	"	100	"	"	"	"	
m,p-Xylene	32	1.0	"	1	"	"	"	"	
o-Xylene	1.4	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	61	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

LL_W10_082812_01 T121487-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	hy EPA	Method 8260B	
voiauic	Organic	Compounds	DYELA	MICHIOU OZOOD	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		90.6 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		108 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

7400

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

LL_W11_082812_01 T121487-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2083109

08/31/12

09/05/12

EPA 8015C

50

Purgeable	Petroleum H	lydrocarbons	by	EPA 8015C

C6-C12 (GRO)

00 012 (0110)	7.100		~B' 1	•	2000107	00/01/12	07/06/12	Billoolee	
Surrogate: 4-Bromofluorobenzene		92.1 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	1.1	1.0	"	"	"	"	"	"	
sec-Butylbenzene	1.9	1.0	"	"	"	"	"	"	
tert-Butylbenzene	1.4	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	13	1.0	"	"	"	"	"	"	
4-Chlorotoluene	6.2	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	2.9	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	2.1	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
· * *									

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

LL_W11_082812_01 T121487-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	10	1.0	"	"	"	"	"	"
p-Isopropyltoluene	1.9	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	5.0	1.0	"	"	"	"	"	"
n-Propylbenzene	7.4	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	1.0	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	97	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	70	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	16	0.50	"	"	"	"	"	"
Гoluene	30	0.50	"	"	"	"	"	"
Ethylbenzene	47	0.50	"	"	"	"	"	"
n,p-Xylene	130	1.0	"	"	"	"	"	"
o-Xylene	20	0.50	"	"	"	"	"	"
Γert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	**	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

LL_W11_082812_01 T121487-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compor	ınds bv	EPA	Method 8260 l	R
v oratric	Organic	Compou	mus vy	$\mathbf{L}\mathbf{L}\mathbf{L}\mathbf{L}\mathbf{L}$	MICHIOU 02001	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		115 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		94.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

LL_TB_082812 T121487-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260E
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

LL_TB_082812 T121487-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

LL_TB_082812 T121487-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2083023	08/30/12	08/31/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		98.0 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		79.5 %	81-136		"	"	"	"	S-GC
Surrogate: Toluene-d8		94.0 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2083109 - EPA 5030 GC										
Blank (2083109-BLK1)				Prepared:	: 08/31/12	Analyze	d: 09/05/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	96.1		"	100		96.1	72.6-146			
LCS (2083109-BS1)				Prepared:	: 08/31/12	Analyze	d: 09/05/12			
C6-C12 (GRO)	6270	50	ug/l	5500		114	75-125			
Surrogate 4-Bromofluorobenzene	125		"	100		125	72.6-146			
Matrix Spike (2083109-MS1)	So	urce: T12148	37-02	Prepared:	: 08/31/12	Analyze	d: 09/05/12			
C6-C12 (GRO)	12600	50	ug/l	5500	8170	81.0	65-135			
Surrogate 4-Bromofluorobenzene	122		"	100		122	72.6-146			
Matrix Spike Dup (2083109-MSD1)	So	urce: T12148	37-02	Prepared:	: 08/31/12	Analyze	d: 09/05/12			
C6-C12 (GRO)	11600	50	ug/l	5500	8170	62.1	65-135	8.60	20	QM-0′
Surrogate 4-Bromofluorobenzene	131		"	100		131	72.6-146			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Rotch 2083023 - FPA 5030 CCMS										

Blank (2083023-BLK1)				Prepared & Analyzed: 08/30/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
ert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
1-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
eis-1,2-Dichloroethene	ND	1.0	"	
rans-1,2-Dichloroethene	ND	1.0	"	
,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
eis-1,3-Dichloropropene	ND	0.50	"	
rans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
sopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

7.32

8.12

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2083023-BLK1)				Prepared & Ar	nalyzed: 08/30/	12
p-Isopropyltoluene	ND	1.0	ug/l			
Methylene chloride	ND	1.0	"			
Naphthalene	ND	1.0	"			
n-Propylbenzene	ND	1.0	"			
Styrene	ND	1.0	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"			
Tetrachloroethene	ND	1.0	"			
1,2,3-Trichlorobenzene	ND	1.0	"			
1,2,4-Trichlorobenzene	ND	1.0	"			
1,1,2-Trichloroethane	ND	1.0	"			
1,1,1-Trichloroethane	ND	1.0	"			
Trichloroethene	ND	1.0	"			
richlorofluoromethane	ND	1.0	"			
,2,3-Trichloropropane	ND	1.0	"			
,3,5-Trimethylbenzene	ND	1.0	"			
2,4-Trimethylbenzene	ND	1.0	"			
inyl chloride	ND	1.0	"			
Benzene	ND	0.50	"			
oluene	ND	0.50	"			
thylbenzene	ND	0.50	"			
n,p-Xylene	ND	1.0	"			
-Xylene	ND	0.50	"			
Pert-amyl methyl ether	ND	2.0	"			
Fert-butyl alcohol	ND	10	"			
Di-isopropyl ether	ND	2.0	"			
Ethyl tert-butyl ether	ND	2.0	"			
Methyl tert-butyl ether	ND	1.0	"			
,1,2-trichloro-1,2,2-trifluoroethane (CFC 13)	ND	5.0	"			
urrogate 4-Bromofluorobenzene	7.03		"	8.00	87.9	83.5-119

SunStar Laboratories, Inc.

Surrogate Dibromofluoromethane

Surrogate Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

81-136

88.8-117

91.5

102

8.00

8.00

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/05/12 16:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2083023 - EPA 5030 GCMS	_			-			_		_	
LCS (2083023-BS1)				Prepared:	08/30/12	Analyze	d: 08/31/12			
Chlorobenzene	17.5	1.0	ug/l	20.0		87.4	75-125			
1,1-Dichloroethene	17.6	1.0	"	20.0		87.8	75-125			
Trichloroethene	17.8	1.0	"	20.0		89.2	75-125			
Benzene	17.2	0.50	"	20.0		86.2	75-125			
Toluene	17.6	0.50	"	20.0		88.0	75-125			
Surrogate 4-Bromofluorobenzene	7.62		"	8.00		95.2	83.5-119			
Surrogate Dibromofluoromethane	7.17		"	8.00		89.6	81-136			
Surrogate Toluene-d8	7.89		"	8.00		98.6	88.8-117			
Matrix Spike (2083023-MS1)	So	urce: T12147	1-05	Prepared:	08/30/12	Analyze	d: 08/31/12			
Chlorobenzene	17.6	1.0	ug/l	20.0	ND	87.8	75-125			
1,1-Dichloroethene	18.8	1.0	"	20.0	ND	93.9	75-125			
Trichloroethene	16.5	1.0	"	20.0	ND	82.4	75-125			
Benzene	17.8	0.50	"	20.0	ND	89.0	75-125			
Toluene	18.0	0.50	"	20.0	ND	90.2	75-125			
Surrogate 4-Bromofluorobenzene	7.68		"	8.00		96.0	83.5-119			
Surrogate Dibromofluoromethane	7.09		"	8.00		88.6	81-136			
Surrogate Toluene-d8	7.87		"	8.00		98.4	88.8-117			
Matrix Spike Dup (2083023-MSD1)	So	urce: T12147	1-05	Prepared:	08/30/12	Analyze	d: 08/31/12			
Chlorobenzene	18.0	1.0	ug/l	20.0	ND	90.2	75-125	2.75	20	
1,1-Dichloroethene	18.5	1.0	"	20.0	ND	92.6	75-125	1.39	20	
Trichloroethene	16.7	1.0	"	20.0	ND	83.4	75-125	1.15	20	
Benzene	17.8	0.50	"	20.0	ND	89.0	75-125	0.00	20	
Toluene	18.5	0.50	"	20.0	ND	92.4	75-125	2.46	20	
Surrogate 4-Bromofluorobenzene	7.52		"	8.00		94.0	83.5-119			
Surrogate Dibromofluoromethane	6.91		"	8.00		86.4	81-136			
Surrogate Toluene-d8	8.01		"	8.00		100	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/05/12 16:24

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Chain of Custody Record

Client: MUREX ENVIRONMENTAl Address: 2640 Walnut Ave, Unit F	_ INC.						oate: Proje				012 CEN	_		Pa	ge:	<u> </u>	_ OF		
Phone: (714) 508-0800 Fax: (Project Manager: Jeremy Squire (С	-	ctor:	Fr	ane	Sosi	С			nt Proj = #:		1003-0	001-300	
Sample ID LL_W9_082812_01 LL_W10_082812_01 LL_W11_082812_01 LL_TB_082812	Date Sampled 8-28-12 8-28-12	Time 1000 1244 1526	Sample Type GW GW Water	XXXTPHg (8015 M)										7 99 9 Total # of containers	C	Comme	nts/Preser	vative	O Laboratory ID #
Relinquished by (signature)	Date / Ti	me 620	Received b	y: (S		Date /		e) 16 1 0	-			dy se		20			Notes		
Relinquished by: (signature)	Date / Ti	me	Received b	y: (S				∍)	Rec		good	/N/NA	7	A					
Relinquished by: (signature)	Date / Ti	me	Received b	y: (S	Sign /	Date /	/ Time	э)	<u> </u>			time:	 Stand		4.4 				
Sample disposal Instructions: Disposal @ \$2.0	00 each	Return to	o client		Pic	kup							 -						

SAMPLE RECEIVING REVIEW SHEET

BATCH#	
Client Name: Pr	roject: <u>Cenco</u>
Received by: Dan M	ate/Time Received: 8(28/12 1620
Delivered by: Client SunStar Courier GSO	FedEx Other
Total number of coolers received Temp crit	teria = 6°C > 0°C (no <u>frozen</u> containers)
Temperature: cooler #1 $\underline{4.6}$ °C +/- the CF (-0.2°C) = $\underline{4}$.	<u>ч</u> °C corrected temperature
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected temperature
cooler #3°C +/- the CF (- 0.2°C) =	°C corrected temperature
Samples outside temp. but received on ice, w/in 6 hours of final	sampling. Yes No* No/A
Custody Seals Intact on Cooler/Sample	□Yes □No* ⊠N/A
Sample Containers Intact	∑Yes □No*
Sample labels match COC ID's	Yes □No*
Total number of containers received match COC	∑Yes □No*
Proper containers received for analyses requested on COC	Yes □No*
Proper preservative indicated on COC/containers for analyses re	equested Yes No* NoA
Complete shipment received in good condition with correct tempereservatives and within method specified holding times.	
* Complete Non-Conformance Receiving Sheet if checked Cool	ler/Sample Review - Initials and date 28
Comments:	

07 September 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 08/30/12 16:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shields For Wendy Hsiao Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_W7_082912_01	T121499-01	Water	08/29/12 08:00	08/30/12 16:20
LL_W8_082912_01	T121499-02	Water	08/29/12 11:30	08/30/12 16:20
LL_503B_083012_01	T121499-03	Water	08/30/12 12:00	08/30/12 16:20
LL_W12_083012_01	T121499-04	Water	08/30/12 14:23	08/30/12 16:20
LL_TB_083012	T121499-05	Water	08/30/12 00:00	08/30/12 16:20

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_W7_082912_01 T121499-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstan Zunstantstres, Inc.										
Purgeable Petroleum Hydrocarbon										
<u>C6-C12 (GRO)</u>	ND	50	ug/l	1	2083109	08/31/12	09/05/12	EPA 8015C		
Surrogate: 4-Bromofluorobenzene		91.5 %	72.6-	146	"	"	"	"		
Volatile Organic Compounds by E	PA Method 8260B									
Bromobenzene	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B		
Bromochloromethane	ND	1.0	"	"	"	"	"	"		
Bromodichloromethane	ND	1.0	"	"	"	"	"	"		
Bromoform	ND	1.0	"	"	"	"	"	"		
Bromomethane	ND	1.0	"	"	"	"	"	"		
n-Butylbenzene	ND	1.0	"	"	"	"	"	"		
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"		
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"		
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"		
Chlorobenzene	ND	1.0	"	"	"	"	"	"		
Chloroethane	ND	1.0	"	"	"	"	"	"		
Chloroform	ND	1.0	"	"	"	"	"	"		
Chloromethane	ND	1.0	"	"	"	"	"	"		
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"		
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"		
Dibromochloromethane	ND	1.0	"	"	"	"	"	"		
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"		
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"		
Dibromomethane	ND	1.0	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"		
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"		
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"		
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"		
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_W7_082912_01 T121499-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sunstar Laboratories, Inc.									
Volatile Organic Compounds by I	EPA Method 8260B	3								
1,2-Dichloropropane	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B		
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	ND	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
n-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	ND	1.0	"	"	"	"	"	"		
Benzene	ND	0.50	"	"	"	"	"	"		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_W7_082912_01 T121499-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

				,				
Volatile Organic Compounds by EPA	Method 8260B	}						
Tert-butyl alcohol	ND	10	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		93.8 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		85.9 %	81-136		"	"	"	"
Surrogate: Toluene-d8		94.8 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco 15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/07/12 08:22

EPA 8015C

LL_W8_082912_01 T121499-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2083109

08/31/12

09/05/12

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		92.3 %	72.6-	146	"	"	"	"					
Volatile Organic Compounds by EPA Method 8260B													
Bromobenzene	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B					
Bromochloromethane	ND	1.0	"	"	"	"	"	"					
Bromodichloromethane	ND	1.0	"	"	"	"	"	"					
Bromoform	ND	1.0	"	"	"	"	"	"					
Bromomethane	ND	1.0	"	"	"	"	"	"					
n-Butylbenzene	ND	1.0	"	"	"	"	"	"					
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"					
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"					
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"					
Chlorobenzene	ND	1.0	"	"	"	"	"	"					
Chloroethane	ND	1.0	"	"	"	"	"	"					
Chloroform	ND	1.0	"	"	"	"	"	"					
Chloromethane	ND	1.0	"	"	"	"	"	"					
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"					
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"					
Dibromochloromethane	ND	1.0	"	"	"	"	"	"					
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"					
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"					
Dibromomethane	ND	1.0	"	"	"	"	"	"					
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"					
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"					
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"					
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"					
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"					
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"					
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"					
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"					
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"					

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_W8_082912_01 T121499-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Volatile Organic Compounds by EPA Method 8260B										
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	ND	1.0	"	"	"	"	"	"		
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
n-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Γetrachloroethene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Γrichloroethene	ND	1.0	"	"	"	"	"	"		
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	ND	1.0	"	"	"	"	"	"		
Benzene	ND	0.50	"	"	"	"	"	"		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
n,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Fert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_W8_082912_01 T121499-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.										
Volatile Organic Compounds by EPA	Method 8260B									
Tert-butyl alcohol	ND	10	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B		
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"		
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"		
(CFC 113)										
Surrogate: 4-Bromofluorobenzene		93.5 %	83.5-119 81-136		"	"	"	"		
Surrogate: Dibromofluoromethane		88.6 %			"	"	"	"		
Surrogate: Toluene-d8		98.0 %	88.8-1	17	"	"	"	"		

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 08:22

LL_503B_083012_01 T121499-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	りいしつし

C6-C12 (GRO)	2000	50	ug/l	1	2083109	08/31/12	09/05/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		107 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	2.2	1.0	"	"	"	"	"	"
sec-Butylbenzene	2.1	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_503B_083012_01 T121499-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	5.8	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	98	1.0	"	"	"	"	"	"	
n-Propylbenzene	17	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	34	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	120	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	130	0.50	"	"	"	"	"	"]
Toluene	19	0.50	"	"	"	"	"	"	
Ethylbenzene	100	0.50	"	"	"	"	"	"	
m,p-Xylene	190	1.0	"	"	"	"	"	"	
o-Xylene	39	0.50	"	"	"	"	"	"	
Γert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_503B_083012_01 T121499-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B	
Methyl tert-butyl ether	3.9	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		86.8 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		96.5 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 08:22

LL_W12_083012_01 T121499-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	りいしつし

C6-C12 (GRO)	580	50	ug/l	1	2083109	08/31/12	09/05/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		95.8 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA Mo	ethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	3.2	1.0	"	"	"	"	"	"
sec-Butylbenzene	1.9	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_W12_083012_01 T121499-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unStar La	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	3.0	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	20	1.0	"	"	"	"	"	"	
n-Propylbenzene	7.5	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.2	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	1.5	0.50	"	"	"	"	"	"	
m,p-Xylene	1.0	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_W12_083012_01 T121499-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		C4 T							

SunStar Laboratories, Inc.

	5	unotar Di		105, 1110.	,				
Volatile Organic Compounds by EP.	A Method 8260B								
Di-isopropyl ether	ND	2.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.1 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		85.1 %	81-1	136	"	"	"	"	
Surrogate: Toluene-d8		96.5 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_TB_083012 T121499-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

LL_TB_083012 T121499-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 08:22

LL_TB_083012 T121499-05 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2083117	08/31/12	09/03/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		95.1 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		88.8 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		95.4 %	88.8-117	,	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2083109 - EPA 5030 GC										
Blank (2083109-BLK1)				Prepared:	08/31/12	Analyzed	1: 09/05/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	96.1		"	100		96.1	72.6-146			
LCS (2083109-BS1)				Prepared:	08/31/12	Analyzed	1: 09/05/12			
C6-C12 (GRO)	6270	50	ug/l	5500		114	75-125			
Surrogate 4-Bromofluorobenzene	125		"	100		125	72.6-146			
Matrix Spike (2083109-MS1)	Sou	ırce: T12148	37-02	Prepared:	08/31/12	Analyzed	1: 09/05/12			
C6-C12 (GRO)	12600	50	ug/l	5500	8170	81.0	65-135			
Surrogate 4-Bromofluorobenzene	122		"	100		122	72.6-146			
Matrix Spike Dup (2083109-MSD1)	Sou	ırce: T12148	37-02	Prepared:	08/31/12	Analyzed	1: 09/05/12			
C6-C12 (GRO)	11600	50	ug/l	5500	8170	62.1	65-135	8.60	20	QM-07
Surrogate 4-Bromofluorobenzene	131		"	100		131	72.6-146			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2083117 - EPA 5030 GCMS										
Blank (2083117-BLK1)				Prepared:	08/31/12	Analyzed	: 09/03/12			
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	**							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							
Isopropylbenzene	ND	1.0	"							

SunStar Laboratories, Inc.

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2083117 - EPA 5030 GCMS										
Blank (2083117-BLK1)				Prepared:	08/31/12	Analyzed	1: 09/03/12			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.67		"	8.00		95.9	83.5-119			
Surrogate Dibromofluoromethane	6.46		"	8.00		80.8	81-136			S-G
Surrogate Toluene-d8	7.60		"	8.00		95.0	88.8-117			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2083117 - EPA 5030 GCMS	-			-			_			
LCS (2083117-BS1)				Prepared:	08/31/12	Analyze	d: 09/03/12			
Chlorobenzene	17.2	1.0	ug/l	20.0		85.8	75-125			
1,1-Dichloroethene	18.6	1.0	"	20.0		93.0	75-125			
Trichloroethene	18.8	1.0	"	20.0		93.8	75-125			
Benzene	16.8	0.50	"	20.0		83.9	75-125			
Toluene	18.6	0.50	"	20.0		93.1	75-125			
Surrogate 4-Bromofluorobenzene	7.76		"	8.00		97.0	83.5-119			
Surrogate Dibromofluoromethane	7.55		"	8.00		94.4	81-136			
Surrogate Toluene-d8	8.01		"	8.00		100	88.8-117			
Matrix Spike (2083117-MS1)	So	urce: T12149	9-01	Prepared:	08/31/12	Analyze	d: 09/03/12			
Chlorobenzene	16.8	1.0	ug/l	20.0	ND	83.9	75-125			
1,1-Dichloroethene	17.5	1.0	"	20.0	ND	87.3	75-125			
Trichloroethene	21.0	1.0	"	20.0	ND	105	75-125			
Benzene	16.8	0.50	"	20.0	ND	84.1	75-125			
Toluene	17.1	0.50	"	20.0	ND	85.6	75-125			
Surrogate 4-Bromofluorobenzene	7.77		"	8.00		97.1	83.5-119			
Surrogate Dibromofluoromethane	7.41		"	8.00		92.6	81-136			
Surrogate Toluene-d8	8.11		"	8.00		101	88.8-117			
Matrix Spike Dup (2083117-MSD1)	So	urce: T12149	9-01	Prepared:	08/31/12	Analyze	d: 09/03/12			
Chlorobenzene	17.0	1.0	ug/l	20.0	ND	84.8	75-125	1.13	20	
1,1-Dichloroethene	18.2	1.0	"	20.0	ND	90.9	75-125	4.04	20	
Trichloroethene	20.9	1.0	"	20.0	ND	105	75-125	0.0955	20	
Benzene	16.5	0.50	"	20.0	ND	82.4	75-125	2.04	20	
Toluene	17.2	0.50	"	20.0	ND	85.8	75-125	0.175	20	
Surrogate 4-Bromofluorobenzene	7.99		"	8.00		99.9	83.5-119			
Surrogate Dibromofluoromethane	7.76		"	8.00		97.0	81-136			
Surrogate Toluene-d8	8.11		"	8.00		101	88.8-117			

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 08:22

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

E The concentration indicated for this analyte is above the calibration range of the instrument. This value should be considered as an

estimate as the actual value may be higher.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL INC. Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (714) 508-0880 Project Manager: Jeremy Squire (714) 604-5836						Pr Co	Date: S · 30 · 2012 Project Name: CENCO Collector: Frane Sosic Batch #: 1121499							Page: OF			
Sample ID LL_W+_082912~01	Date Sampled 8·29·2	Time	Sample Type GW	3 (8015	XVOCs (8260 B)									Total # of containers	Comments/Preservative	C Laboratory ID #	
<u> </u>	8.30.12	:30 280	GW	\triangleright	$\langle \rangle$	_	+-			\dashv	-		+	6		02	
LL_WIZ_083012-01	8.30.12	1423	GW	Ŕ	X	+	+		\vdash	\dashv	_	++	-	16		03	
LL_TB_083012			Water		X					1				2		05	
					\dashv	+	+	_	Н	\dashv	+	++	<u> </u>	-	 		
										_							
Relinquished by: (signature)	Date / Ti	me 1620	Received b	y (S		Date /					f conta Custod	iners y seals	1	26 1	Notes		
Relinquished by: (signature) Relinquished by: (signature)	Date / Ti	me	Received b		ign /	Date /	•		Rec		ct? Y/f good cold	N/NA		(A	3.8°		
									Tur	n aro	und ti	me:	Stand	dard			
Sample disposal Instructions: Disposal @ \$2.	00 each	Return t	o client		Pic	kup											

SAMPLE RECEIVING REVIEW SHEET

BATCH #				
Client Name:	Project: Orne	0		
Received by: Day	Date/Time Rec	eived: 8.	30 412	16:20
Delivered by: ☐ Client ☑ SunStar Courier ☐ GSO	FedEx	Other		
Total number of coolers receivedo Temp c	riteria = 6°C >	0°C (no <u>f</u>	<u>rozen</u> cor	itainers)
Temperature: cooler #1 $\underline{4.0}$ °C +/- the CF (-0.2°C) = $\frac{1}{2}$	3.8 °C correct	ed temperatu	re	•
cooler #2°C +/- the CF (- 0.2°C) =	°C correct	ed temperatu	re	
cooler #3°C +/- the CF (- 0.2 °C) =	°C correct	ed temperatu	re	
Samples outside temp. but received on ice, w/in 6 hours of fin	al sampling.	ĭ¥Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample		∐Yes	□No*	N/A
Sample Containers Intact		XYes	□No*	
Sample labels match COC ID's		Yes	□No*	
Total number of containers received match COC		Yes	□No*	
Proper containers received for analyses requested on COC		¥Yes	□No*	
Proper preservative indicated on COC/containers for analyses	requested	¥Yes	□No*	□N/A
Complete shipment received in good condition with correct te preservatives and within method specified holding times.			bels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked C	ooler/Sample Rev	vi ew - Initi a	ls and date	BC 8.31.17
Comments:				
and the state of t				

07 September 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861 RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 09/04/12 16:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shields For Wendy Hsiao Project Manager

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/07/12 16:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_701_083112_01	T121518-01	Water	08/31/12 09:36	09/04/12 16:15
LL_701_083112_02	T121518-02	Water	08/31/12 09:45	09/04/12 16:15
LL_702_083112_01	T121518-03	Water	08/31/12 12:40	09/04/12 16:15
LL_702_083112_02	T121518-04	Water	08/31/12 13:00	09/04/12 16:15
LL_703_083112_01	T121518-05	Water	08/31/12 14:00	09/04/12 16:15
LL_703_083112_02	T121518-06	Water	08/31/12 14:32	09/04/12 16:15
LL_704_090412_01	T121518-07	Water	09/04/12 10:25	09/04/12 16:15
LL_705_090412_01	T121518-08	Water	09/04/12 10:37	09/04/12 16:15
LL_706_090412_01	T121518-09	Water	09/04/12 14:05	09/04/12 16:15
LL_707_090412_01	T121518-10	Water	09/04/12 16:13	09/04/12 16:15
LL_TB_090412	T121518-11	Water	09/04/12 00:00	09/04/12 16:15

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_701_083112_01 T121518-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	350	50	ug/l	1	2090512	09/05/12	09/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		102 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260l	В						
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	5.3	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	18	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	2.9	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_701_083112_01 T121518-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.										
Volatile Organic Compounds by										
1,2-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B		
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	ND	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
n-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Fetrachloroethene	2.7	1.0	"	"	"	"	"	"		
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Frichloroethene	16	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	3.7	1.0	"	"	"	"	"	"		
Benzene	0.75	0.50	"	"	"	"	"	"		
Γoluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
n,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_701_083112_01 T121518-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B										
Tert-butyl alcohol	ND	10	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B		
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"		
1 1 0 7 1 1 1 0 0 7 10 1	NID	~ 0	.,							

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

$LL_701_083112_02$ T121518-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	りいしつし

ND 1.0	"
Bromobenzene ND 1.0 ug/l 1 2090511 09/05/12 09/05/12 Bromochloromethane ND 1.0 "	
Bromochloromethane ND 1.0 "	
Bromodichloromethane ND 1.0 "	2 EPA 8260B
Bromoform ND 1.0 " <t< td=""><td>"</td></t<>	"
Bromomethane ND 1.0 "	"
n-Butylbenzene ND 1.0 "	"
sec-Butylbenzene ND 1.0 "	"
tert-Butylbenzene ND 1.0 " " " " " " " " " " " " " " " " " " "	"
Carbon tetrachloride ND 0.50 " <td>"</td>	"
Chlorobenzene ND 1.0 "	"
Chloroethane ND 1.0 "	"
Chloroform ND 1.0 " <	"
Chloromethane ND 1.0 " " " " "	"
Chiofolinethalie ND 1.0	"
2-Chlorotoluene ND 1.0 " " " "	"
	II .
4-Chlorotoluene ND 1.0 " " " "	"
Dibromochloromethane ND 1.0 " " " "	"
1,2-Dibromo-3-chloropropane ND 1.0 " " " "	"
1,2-Dibromoethane (EDB) ND 1.0 " " " "	"
Dibromomethane ND 1.0 " " " "	"
1,2-Dichlorobenzene ND 1.0 " " " "	"
1,3-Dichlorobenzene ND 1.0 " " " "	"
1,4-Dichlorobenzene ND 1.0 " " " "	"
Dichlorodifluoromethane ND 0.50 " " " " "	"
1,1-Dichloroethane ND 1.0 " " " "	"
1,2-Dichloroethane ND 0.50 " " " "	"
1,1-Dichloroethene 5.0 1.0 " " " "	"
cis-1,2-Dichloroethene 17 1.0 " " " "	"
trans-1,2-Dichloroethene 2.8 1.0 " " " " "	"
1,2-Dichloropropane ND 1.0 " " " " "	m .

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

LL_701_083112_02 T121518-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	8	unstar La	iboratori	es, inc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	2.5	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	15	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	3.5	1.0	"	"	"	"	"	"	
Benzene	0.94	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_701_083112_02 T121518-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

Di-isopropyl ether	ND	2.0	/1						
Bi isopropyi etilei		2.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		101 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		96.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

09/06/12 EPA 8015C

Murex Project: Cenco

1200

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_702_083112_01 T121518-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2090512 09/05/12

50

Purgeable	Petroleum	Hydrocarbons	by EPA	8015C

C6-C12 (GRO)

CU-C12 (GRO)	1200	50	ug/1	•	2070312	07103112	07/00/12	LI A 6015C	
Surrogate: 4-Bromofluorobenzene		116 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EF	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	1.2	1.0	"	"	"	"	"	"	
sec-Butylbenzene	19	1.0	"	"	"	"	"	"	
tert-Butylbenzene	2.6	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	2.0	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	1.2	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	15	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_702_083112_01 T121518-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Si	ınstar La	aboratori	ies, inc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	43	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	40	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	2.0	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	88	0.50	"	"	"	"	"	"	
Toluene	5.9	0.50	"	"	"	"	"	"	
Ethylbenzene	1.8	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	0.94	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_702_083112_01 T121518-03 (Water)

	Re	porting							
Analyte	esult	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EP	'A Method 8260B				
Di-isopropyl ether	ND	2.0	ug/l	1	2

Di-isopropyl ether	ND	2.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	
(CFC 113)									
Surrogate: 4-Bromofluorobenzene		103 %	83.5-1	19	"	"	"	"	
Surrogate: Dibromofluoromethane		99.0 %	81-13	36	"	"	"	"	
Surrogate: Toluene-d8		102 %	88.8-1	17	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

LL_702_083112_02 T121518-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	4300	50	ug/l	1	2090512	09/05/12	09/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		118 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	CPA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.2	1.0	"	"	"	"	"	"
sec-Butylbenzene	21	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.7	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	2.1	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	1.3	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	16	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_702_083112_02 T121518-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	5	SunStar La	aboratori	es, Inc.				
Volatile Organic Compounds by E	PA Method 8260B							
1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	11
Isopropylbenzene	47	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	43	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	2.1	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	72	0.50	"	"	"	"	"	"
Toluene	6.2	0.50	"	"	"	"	"	"
Ethylbenzene	1.9	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	0.99	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_702_083112_02 T121518-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B Di-isopropyl ether ND 2.0 ug/l 1 2090511 09/05/12 09/05/12 EPA 8260B Ethyl tert-butyl ether ND 2.0 "

 Methyl tert-butyl ether
 ND
 1.0
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "

 Surrogate: Dibromofluoromethane
 99.1 %
 81-136
 " " " " "

 Surrogate: Toluene-d8
 102 %
 88.8-117
 " " " " "

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

490

Reported: 09/07/12 16:41

09/06/12 EPA 8015C

LL_703_083112_01 T121518-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2090512 09/05/12

50

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
rurgeame	remoleum	i n vui ocai bons	DVEFA	OUISC

C6-C12 (GRO)

C0-C12 (GRO)	770	50	ug/1	1	2070312	07/03/12	07/00/12	LI A 6015C	
Surrogate: 4-Bromofluorobenzene		107 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by EI	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	1.6	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	1.5	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	12	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_703_083112_01 T121518-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	St	ınstar La	aboratori	es, inc.					
Volatile Organic Compounds by EPA	Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	3.4	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	1.2	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	1.2	1.0	"	"	"	"	"	"	
Benzene	39	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	ii .	
Ethylbenzene	ND	0.50	"	"	"	"	"	ii .	
m,p-Xylene	ND	1.0	"	"	"	"	"	ii .	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_703_083112_01 T121518-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by	y EPA Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2090511	09/05/12	09/05/12	EPA 8260B
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"
Surrogate: 4-Bromofluorobenzene		98.8 %	83.5-	119	"	"	"	"
Surrogate: Dibromofluoromethane		97.4 %	81-1	36	"	"	"	"
Surrogate: Toluene-d8		95.9 %	88.8-	117	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/07/12 16:41

EPA 8015C

09/06/12

LL_703_083112_02 T121518-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2090512

09/05/12

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

()									
Surrogate: 4-Bromofluorobenzene		106 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	1.5	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	1.5	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	13	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
• •									

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_703_083112_02 T121518-06 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	2	SunStar La	iboratori	es, inc.				
Volatile Organic Compounds by								
1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
eis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
(sopropylbenzene	3.5	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	1.3	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	1.1	1.0	"	"	"	"	"	"
Benzene	40	0.50	"	"	"	"	"	"
Γoluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	0.52	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Fert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Fert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_703_083112_02 T121518-06 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic	Compounds l	by EPA	Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		121 %	83.5	-119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		97.5 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		94.8 %	88.8	-117	"	"	"	"	

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

LL_704_090412_01 T121518-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petrole	ım Hydrocarbons	by EPA	8015C
--------------------------	-----------------	--------	-------

C6-C12 (GRO)	7800	50	ug/l	1	2090512	09/05/12	09/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		111 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.0	1.0	"	"	"	"	"	11
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	11
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	11
4-Chlorotoluene	ND	1.0	"	"	"	"	"	11
Dibromochloromethane	ND	1.0	"	"	"	"	"	11
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	11
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	11
Dibromomethane	ND	1.0	"	"	"	"	"	11
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	2.6	1.0	"	"	"	"	"	"
1,2-Dichloroethane	3.4	0.50	"	"	"	"	"	11
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	11
cis-1,2-Dichloroethene	2.4	1.0	"	"	"	"	"	11
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	11

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

LL_704_090412_01 T121518-07 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	78	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	3.6	1.0	"	"	"	"	"	"
n-Propylbenzene	89	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Γetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	260	50	"	50	"	"	"	"
1,2,4-Trimethylbenzene	670	50	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	1	"	"	"	"
Benzene	580	25	"	50	"	"	"	"
Гoluene	30	0.50	"	1	"	"	"	"
Ethylbenzene	550	25	"	50	"	"	"	"
n,p-Xylene	760	50	"	"	"	"	"	"
o-Xylene	33	0.50	"	1	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	24	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_704_090412_01 T121518-07 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compor	ınds bv	EPA	Method 8260 l	R
v oratric	Organic	Compou	mus vy	$\mathbf{L}\mathbf{L}\mathbf{L}\mathbf{L}\mathbf{L}$	MICHIOU 02001	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B	
Methyl tert-butyl ether	44	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		95.6 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		96.0 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/07/12 16:41

LL_705_090412_01 T121518-08 (Water)

	Reporting							
Analyte Result	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by FPA	8015C
Purgeable	Petroleum	пуштосатоонѕ	DVEPA	9015C

C6-C12 (GRO)	100	50	ug/l	1	2090512	09/05/12	09/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		98.5 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA M	Iethod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/07/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	11
Chloroethane	ND	1.0	"	"	"	"	"	11
Chloroform	ND	1.0	"	"	"	"	"	11
Chloromethane	ND	1.0	"	"	"	"	"	11
2-Chlorotoluene	ND	1.0	"	"	"	"	"	11
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	11
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	11
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	11
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	11
1,2-Dichloroethane	0.51	0.50	"	"	"	"	"	11
1,1-Dichloroethene	2.0	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	13	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	11

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_705_090412_01 T121518-08 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, fic.										
Volatile Organic Compounds by EPA Method 8260B										
1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/07/12	EPA 8260B		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	ND	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
n-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	ND	1.0	"	"	"	"	"	"		
Benzene	0.79	0.50	"	"	"	"	"	"		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		
Tert-butyl alcohol	ND	10	"	"	"	"	"	"		

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_705_090412_01 T121518-08 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B									
Di-isopropyl ether	ND	2.0	ug/l	1	2090511	09/05/12	09/07/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	12	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/07/12 16:41

LL_706_090412_01 T121518-09 (Water)

	Reporting							
Analyte Result	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	410	50	ug/l	1	2090512	09/05/12	09/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		93.0 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EI	PA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	4.8	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_706_090412_01 T121518-09 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, Inc.										
Volatile Organic Compounds by EPA Method 8260B										
1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B		
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Isopropylbenzene	ND	1.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"		
Methylene chloride	ND	1.0	"	"	"	"	"	"		
Naphthalene	ND	1.0	"	"	"	"	"	"		
n-Propylbenzene	ND	1.0	"	"	"	"	"	"		
Styrene	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	1.2	1.0	"	"	"	"	"	"		
Benzene	12	0.50	"	"	"	"	"	"		
Toluene	ND	0.50	"	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"	"		
m,p-Xylene	1.2	1.0	"	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"		
Tert-butyl alcohol	ND	10	"	"	"	"	"	"		

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_706_090412_01 T121518-09 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

volatile Organic Compounds by E.	PA Methou 8200B								
Di-isopropyl ether	ND	2.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	5.8	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

6700

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_707_090412_01 T121518-10 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

11σ/1

2090512 09/05/12

09/06/12

FPA 8015C

50

Durgooblo	Dotroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	Hydrocarbons	DVEPA	るひょうし

C6-C12 (GRO)

C6-C12 (GRO)	6700	50	ug/I	1	2090512	09/05/12	09/06/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		115 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EP	A Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	13	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.4	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	11
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	11
1,2-Dichloroethane	1.3	0.50	"	"	"	"	"	11
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	3.8	1.0	"	"	"	"	"	11
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_707_090412_01 T121518-10 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	29	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	2.4	1.0	"	"	"	"	"	"
Naphthalene	5.2	1.0	"	"	"	"	"	"
n-Propylbenzene	73	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	26	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	55	1.0	"	"	"	"	"	"
Vinyl chloride	1.5	1.0	"	"	"	"	"	"
Benzene	1400	25	"	50	"	"	"	"
Toluene	41	0.50	"	1	"	"	"	"
Ethylbenzene	26	0.50	"	"	"	"	"	"
m,p-Xylene	220	1.0	"	"	"	"	"	"
o-Xylene	29	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_707_090412_01 T121518-10 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds b	v EPA	Method 8260B	
v orathe	Organic	Compounds i	<i>,</i> v L. i A	MICHIOU 0200D	

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2090511	09/05/12	09/06/12	EPA 8260B	
Methyl tert-butyl ether	9.7	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		96.6 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		94.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

LL_TB_090412 T121518-11 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2090511	09/05/12	09/07/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_TB_090412 T121518-11 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2090511	09/05/12	09/07/12	EPA 8260I
nns-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
ethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	ND	1.0	"	"	"	"	"	"
yrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
ichloroethene	ND	1.0	"	"	"	"	"	"
ichlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
hylbenzene	ND	0.50	"	"	"	"	"	"
p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
hyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/07/12 16:41

LL_TB_090412 T121518-11 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2090511	09/05/12	09/07/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		111 %	83.5-119		"	"	"	"	
Surrogate: Dibromofluoromethane		106 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		93.5 %	88.8-117		"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2090512 - EPA 5030 GC										
Blank (2090512-BLK1)				Prepared:	09/05/12	Analyze	d: 09/06/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	95.7		"	100		95.7	72.6-146			
LCS (2090512-BS1)				Prepared:	09/05/12	Analyze	d: 09/06/12			
C6-C12 (GRO)	6110	50	ug/l	5500		111	75-125			
Surrogate 4-Bromofluorobenzene	125		"	100		125	72.6-146			
Matrix Spike (2090512-MS1)	Sou	ırce: T12151	8-03	Prepared:	09/05/12	Analyze	d: 09/06/12			
C6-C12 (GRO)	10400	50	ug/l	5500	1210	167	65-135			QM-07
Surrogate 4-Bromofluorobenzene	129		"	100		129	72.6-146			
Matrix Spike Dup (2090512-MSD1)	Sou	ırce: T12151	8-03	Prepared:	09/05/12	Analyze	d: 09/06/12			
C6-C12 (GRO)	18500	50	ug/l	5500	1210	314	65-135	55.9	20	QM-07
Surrogate 4-Bromofluorobenzene	128		"	100		128	72.6-146			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Rotal 2000511 FDA 5030 CCMS										

Blank (2090511-BLK1)				Prepared & Analyzed: 09/05/12
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
ert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
1-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
,1-Dichloroethane	ND	1.0	"	
,2-Dichloroethane	ND	0.50	"	
,1-Dichloroethene	ND	1.0	"	
is-1,2-Dichloroethene	ND	1.0	"	
rans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
rans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
sopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

%REC

Murex Project: Cenco

Result

9.31

7.92

7.16

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

Blank (2090511-BLK1)				Prepared & Analyzed: 09/05/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	
Methyl tert-butyl ether	ND	1.0	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC	ND	5.0	"	

SunStar Laboratories, Inc.

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Surrogate Toluene-d8

113)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

116

99.0

89.5

8.00

8.00

8.00

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2090511 - EPA 5030 GCMS										
LCS (2090511-BS1)				Prepared:	: 09/05/12	Analyze	d: 09/06/12			
Chlorobenzene	20.5	1.0	ug/l	20.0		102	75-125			
1,1-Dichloroethene	17.9	1.0	"	20.0		89.6	75-125			
Trichloroethene	18.8	1.0	"	20.0		93.8	75-125			
Benzene	22.0	0.50	"	20.0		110	75-125			
Toluene	20.9	0.50	"	20.0		104	75-125			
Surrogate 4-Bromofluorobenzene	9.39		"	8.00		117	83.5-119			
Surrogate Dibromofluoromethane	7.95		"	8.00		99.4	81-136			
Surrogate Toluene-d8	7.62		"	8.00		95.2	88.8-117			
Matrix Spike (2090511-MS1)	So	urce: T12151	8-04	Prepared:	: 09/05/12	Analyze	d: 09/06/12			
Chlorobenzene	22.3	1.0	ug/l	20.0	ND	111	75-125			
1,1-Dichloroethene	19.8	1.0	"	20.0	ND	98.8	75-125			
Trichloroethene	20.7	1.0	"	20.0	ND	104	75-125			
Benzene	72.5	0.50	"	20.0	72.3	0.950	75-125			QM-07
Toluene	28.4	0.50	"	20.0	6.17	111	75-125			
Surrogate 4-Bromofluorobenzene	8.57		"	8.00		107	83.5-119			
Surrogate Dibromofluoromethane	7.96		"	8.00		99.5	81-136			
Surrogate Toluene-d8	7.77		"	8.00		97.1	88.8-117			
Matrix Spike Dup (2090511-MSD1)	So	urce: T12151	8-04	Prepared:	: 09/05/12	Analyze	d: 09/06/12			
Chlorobenzene	20.6	1.0	ug/l	20.0	ND	103	75-125	7.74	20	
1,1-Dichloroethene	18.6	1.0	"	20.0	ND	93.0	75-125	6.15	20	
Trichloroethene	19.1	1.0	"	20.0	ND	95.6	75-125	7.98	20	
Benzene	78.4	0.50	"	20.0	72.3	30.4	75-125	7.79	20	QM-07
Toluene	26.6	0.50	"	20.0	6.17	102	75-125	6.68	20	
Surrogate 4-Bromofluorobenzene	8.16		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	7.97		"	8.00		99.6	81-136			
Surrogate Toluene-d8	7.68		"	8.00		96.0	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/07/12 16:41

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Sample disposal Instructions: Disposal @ \$2.00 each ____

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (Project Manager: Jeremy Squire (7	714) 508-0880		Date: 9 Project Na Collector: Batch #:_	ame: Frane	CENCO Sosic	Clie		
	Date	Baldway (8015 M) (8260 B)				al # of containers	Plus this Trip (Sample for VOC (8260B) only: LL_TB_090412 2 Non-preserved VC	S Z Z Z Z Z Z Z Z Z
Sample ID	Sampled Time	Type 🖺 🚫				Total	Comments/Preservativ	e de
12-701-083112-01	8.31.12 9:36	GW XX				6		01
11_701_083112_02	8.31.12 9:45	I GW XX				6		02
U_702_087112_01	8.31.12 12:40	GW XX	+++			6		63
LL_702_083112_02	8.31.12 13:00	GW XX	\bot			6		64
LL_703_083112_01	8-31-12 14:00	GW XX	+++			6		05
4_703_083/12_02	8.31.12 14:32	GW XX	1 1			6		06
4-704_090412_01	9.4.12 10:25	IGW XX				6		07
4_705_090412_01	9.4.12 10:37	I GW XX				6		०४
11_706_090412_01	9.4.12 14:05	I GW IXIXI				6		09
11-704-090412-01	9.4.12 16:13	IGW XX				6		10
Relinquished by: (signature)	Date / Time	Received by: (Sign / D	ate / Time)	Total #	of containers	62	Notes	
Tr. Sosic	9.4.2012	M 9	4/121615	Chain of	Custody seals	\ \rangle		
Relinquished by: (signature)	Date / Time	Received by: (Sign / D		Received	•	J/A	اً ا	
Relinquished by: (signature)	Date / Time	Received by: (Sign / D	ate / Time)	condition	i/cold	ΙÝ	2.8°	
				Turn ar	ound time:	Standard	1	

Pickup ____

Return to client ____

SAMPLE RECEIVING REVIEW SHEET

BATCH#				
Client Name: Project:	Cenco			-
Received by: Date/Time Re	eceived:	alulia	L 1615	
Delivered by: Client SunStar Courier GSO FedEx	Other		2	-
Total number of coolers received Temp criteria = 6°C	> 0°C (no	<u>frozen</u> co	ntainers)	
Temperature: cooler #1 3.0 °C +/- the CF (-0.2°C) = 2.8 °C corre	cted temperat	ure		
cooler #2°C +/- the CF (- 0.2°C) =°C corre	cted temperat	ure		
cooler #3°C +/- the CF (- 0.2°C) =°C corre	cted temperat	ure		
Samples outside temp. but received on ice, w/in 6 hours of final sampling.	∑Yes	□No*	□N/A	
Custody Seals Intact on Cooler/Sample	□Yes	□No*	[XN/A	
Sample Containers Intact	Yes	□No*		
Sample labels match COC ID's	∑Yes	□No*		
Total number of containers received match COC	⊠Yes	□No*	-	
Proper containers received for analyses requested on COC	∑Yes	□No*		
Proper preservative indicated on COC/containers for analyses requested	∑Yes	□No*	□N/A	
Complete shipment received in good condition with correct temperatures, corpreservatives and within method specified holding times. Yes No	*			27 9 1 41
* Complete Non-Conformance Receiving Sheet if checked Cooler/Sample R	eview - Initi	als and date		
Comments:				
_	-			
				
	· · · · · · · · · · · · · · · · · · ·			

11 September 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861 RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 09/05/12 16:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shields For Wendy Hsiao Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_708_090512_01	T121535-01	Water	09/05/12 09:39	09/05/12 16:30
LL_709_090512_01	T121535-02	Water	09/05/12 13:33	09/05/12 16:30
LL_710_090512_01	T121535-03	Water	09/05/12 15:00	09/05/12 16:30
LL_711_090512_01	T121535-04	Water	09/05/12 16:15	09/05/12 16:30
LL_TB_090512	T121535-05	Water	09/05/12 00:00	09/05/12 16:30

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_708_090512_01 T121535-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	17000	50	ug/l	1	2090705	09/07/12	09/10/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		116 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	CPA Method 8260I	3						
Bromobenzene	ND	1.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	31	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.4	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	8.6	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_708_090512_01 T121535-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloropropane	ND	1.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B	
,3-Dichloropropane	1.3	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
sis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
sopropylbenzene	63	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	23	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	160	10	"	10	"	"	"	"	
n-Propylbenzene	170	10	"	"	"	"	"	"	
Styrene	ND	1.0	"	1	"	"	"	"	
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
etrachloroethene	ND	1.0	"	"	"	"	"	"	
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
richlorofluoromethane	ND	1.0	"	"	"	"	"	"	
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
,3,5-Trimethylbenzene	520	10	"	10	"	"	"	"	
,2,4-Trimethylbenzene	1400	10	"	"	"	"	"	"	I
/inyl chloride	ND	1.0	"	1	"	"	"	"	
Benzene	1400	5.0	"	10	"	"	"	"	F
Coluene	75	0.50	"	1	"	"	"	"	
thylbenzene	710	5.0	"	10	"	"	"	"	
n,p-Xylene	1000	10	"	"	"	"	"	"	
-Xylene	32	0.50	"	1	"	"	"	"	
Cert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_708_090512_01 T121535-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds	by E	PA Met	hod 8260R
voiauic	Organic	Compounds	DY L	\mathbf{L}	nou ozood

Di-isopropyl ether	ND	2.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	390	10	"	10	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		117 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		76.6 %	81-	136	"	"	"	"	S-GC
Surrogate: Toluene-d8		105 %	88.8	117	"	"	"	"	

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

LL_709_090512_01 T121535-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)	670	50	ug/l	1	2090705	09/07/12	09/10/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		117 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA Me	thod 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090703	09/07/12	09/10/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	1.4	1.0	"	"	"	"	"	"
sec-Butylbenzene	3.0	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_709_090512_01 T121535-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	5	unstar La	aboratori	es, inc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2090703	09/07/12	09/10/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	15	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	12	1.0	"	"	"	"	"	"	
n-Propylbenzene	12	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.2	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	0.86	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	1.8	1.0	"	"	"	"	"	"	
o-Xylene	0.67	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	23	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_709_090512_01 T121535-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile	Organic	Compounds b	v EPA	Method 8260B	
v orathe	Organic	Compounds i	<i>,</i> v L. i A	MICHIOU 0200D	

Di-isopropyl ether	ND	2.0	ug/l	1	2090703	09/07/12	09/10/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	2.2	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		91.6 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		73.0 %	81-1	36	"	"	"	"	S-GC
Surrogate: Toluene-d8		93.0 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

09/10/12 EPA 8015C

Murex Project: Cenco

100

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_710_090512_01 T121535-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2090705 09/07/12

50

Purgeable Petroleum Hydrocarbons by EPA 8015C

C6-C12 (GRO)

CO-C12 (GRO)	100	50	ug/1	1	2070103	07/07/12	07/10/12	LI A 6015C	
Surrogate: 4-Bromofluorobenzene		131 %	72.6-	146	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	0.62	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	3.9	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	56	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	16	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

LL_710_090512_01 T121535-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		diistai B	100141011	cs, me.					
Volatile Organic Compounds by	EPA Method 8260B								
1,3-Dichloropropane	ND	1.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	3.8	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	77	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	91	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	1.0	1.0	"	"	"	"	"	"	
Vinyl chloride	1.2	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_710_090512_01 T121535-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Di-isopropyl ether	ND	2.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.8 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		83.9 %	81-1	36	"	"	"	"	
Surrogate: Toluene-d8		96.1 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Project: Cenco Murex

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

LL_711_090512_01 T121535-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	28000	50	ug/l	1	2090705	09/07/12	09/10/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		118 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	CPA Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	31	1.0	"	"	"	"	"	"
sec-Butylbenzene	19	1.0	"	"	"	"	"	"
tert-Butylbenzene	2.0	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	2.2	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_711_090512_01 T121535-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	8.4	1.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	95	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	3.9	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	370	10	"	10	"	"	"	"	
1-Propylbenzene	120	1.0	"	1	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Γrichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	120	1.0	"	"	"	"	"	"	
,2,4-Trimethylbenzene	720	10	"	10	"	"	"	"	
Vinyl chloride	5.8	1.0	"	1	"	"	"	"	
Benzene	2100	5.0	"	10	"	"	"	"	
Toluene	2000	5.0	"	"	"	"	"	"	
Ethylbenzene	640	5.0	"	"	"	"	"	"	
n,p-Xylene	2000	10	"	"	"	"	"	"	
o-Xylene	1100	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	1	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_711_090512_01 T121535-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2090703	09/07/12	09/07/12	EPA 8260B	
Methyl tert-butyl ether	5.9	1.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.5 %	83.5-119	9	"	"	"	"	
Surrogate: Dibromofluoromethane		75.6 %	81-136		"	"	"	"	S-GC
Surrogate: Toluene-d8		95.1 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

LL_TB_090512 T121535-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	B	unstar De	100141011	cs, mc.					
Volatile Organic Compounds by E	PA Method 8260B								
Bromobenzene	ND	1.0	ug/l	1	2090703	09/07/12	09/10/12	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_TB_090512 T121535-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by Ecis-1,3-Dichloropropene	ND	0.50	ug/l	1	2090703	09/07/12	09/10/12	EPA 8260B
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
n,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

LL_TB_090512 T121535-05 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Surrogate: 4-Bromofluorobenzene	96.2 %	83.5-119	2090703	09/07/12	09/10/12	EPA 8260B
Surrogate: Dibromofluoromethane	91.2 %	81-136	"	"	"	"
Surrogate: Toluene-d8	96.8 %	88.8-117	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2090705 - EPA 5030 GC										
Blank (2090705-BLK1)				Prepared:	09/07/12	Analyzed	d: 09/10/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	129		"	100		129	72.6-146			
LCS (2090705-BS1)				Prepared:	09/07/12	Analyzed	d: 09/10/12			
C6-C12 (GRO)	5610	50	ug/l	5500		102	75-125			
Surrogate 4-Bromofluorobenzene	116		"	100		116	72.6-146			
Matrix Spike (2090705-MS1)	Sor	urce: T12154	10-05	Prepared:	09/07/12	Analyzed	d: 09/10/12			
C6-C12 (GRO)	5520	50	ug/l	5500	22.8	99.9	65-135			
Surrogate 4-Bromofluorobenzene	130		"	100		130	72.6-146			
Matrix Spike Dup (2090705-MSD1)	Sor	urce: T12154	10-05	Prepared:	09/07/12	Analyzed	d: 09/10/12			
C6-C12 (GRO)	5520	50	ug/l	5500	22.8	100	65-135	0.100	20	
Surrogate 4-Bromofluorobenzene	123		"	100		123	72.6-146			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 2090703 -	EPA 5030	GCMS
-----------------	----------	-------------

Bromobenzene ND 1.0 ug/l Bromochloromethane ND 1.0 " Bromodichloromethane ND 1.0 " Bromoform ND 1.0 "
Bromodichloromethane ND 1.0 " Bromoform ND 1.0 "
Bromoform ND 1.0 "
Bromotorii ND 1.0
Bromomethane ND 1.0 "
n-Butylbenzene ND 1.0 "
sec-Butylbenzene ND 1.0 "
tert-Butylbenzene ND 1.0 "
Carbon tetrachloride ND 0.50 "
Chlorobenzene ND 1.0 "
Chloroethane ND 1.0 "
Chloroform ND 1.0 "
Chloromethane ND 1.0 "
2-Chlorotoluene ND 1.0 "
4-Chlorotoluene ND 1.0 "
Dibromochloromethane ND 1.0 "
1,2-Dibromo-3-chloropropane ND 1.0 "
1,2-Dibromoethane (EDB) ND 1.0 "
Dibromomethane ND 1.0 "
1,2-Dichlorobenzene ND 1.0 "
1,3-Dichlorobenzene ND 1.0 "
1,4-Dichlorobenzene ND 1.0 "
Dichlorodifluoromethane ND 0.50 "
1,1-Dichloroethane ND 1.0 "
1,2-Dichloroethane ND 0.50 "
1,1-Dichloroethene ND 1.0 "
cis-1,2-Dichloroethene ND 1.0 "
trans-1,2-Dichloroethene ND 1.0 "
1,2-Dichloropropane ND 1.0 "
1,3-Dichloropropane ND 1.0 "
2,2-Dichloropropane ND 1.0 "
1,1-Dichloropropene ND 1.0 "
cis-1,3-Dichloropropene ND 0.50 "
trans-1,3-Dichloropropene ND 0.50 "
Hexachlorobutadiene ND 1.0 "
Isopropylbenzene ND 1.0 "

SunStar Laboratories, Inc.

Batch 2090703 - EPA 5030 GCMS

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Murex Project: Cenco

Result

ND

ND

7.56

6.76

7.98

1.0

5.0

8.00

8.00

8.00

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (2090703-BLK1)				Prepared & Analyzed: 09/07/12
p-Isopropyltoluene	ND	1.0	ug/l	
Methylene chloride	ND	1.0	"	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	
Tetrachloroethene	ND	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichloroethane	ND	1.0	"	
1,1,1-Trichloroethane	ND	1.0	"	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	"	
1,3,5-Trimethylbenzene	ND	1.0	"	
1,2,4-Trimethylbenzene	ND	1.0	"	
Vinyl chloride	ND	1.0	"	
Benzene	ND	0.50	"	
Toluene	ND	0.50	"	
Ethylbenzene	ND	0.50	"	
m,p-Xylene	ND	1.0	"	
o-Xylene	ND	0.50	"	
Tert-amyl methyl ether	ND	2.0	"	
Tert-butyl alcohol	ND	10	"	
Di-isopropyl ether	ND	2.0	"	
Ethyl tert-butyl ether	ND	2.0	"	

SunStar Laboratories, Inc.

1,1,2-trichloro-1,2,2-trifluoroethane (CFC

Surrogate 4-Bromofluorobenzene

Surrogate Dibromofluoromethane

Methyl tert-butyl ether

Surrogate Toluene-d8

113)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

83.5-119

81-136

88.8-117

94.5

84.5

99.8

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/11/12 15:04

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Prepared & Analyzed: 09/07/12 Chlorobenzene 21.9 1.0 ug/l 20.0 110 75-125 1,1-Dichloroethene 22.2 1.0 " 20.0 111 75-125 1 75-125 1 1 1 1 1 1 1 1 1	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Chlorobenzene	Batch 2090703 - EPA 5030 GCMS										
1,1-Dichloroethene	LCS (2090703-BS1)				Prepared	& Analyzo	ed: 09/07/	12			
Trichloroethene	Chlorobenzene	21.9	1.0	ug/l	20.0		110	75-125			
Benzene	1,1-Dichloroethene	22.2	1.0	"	20.0		111	75-125			
Surrogate 4-Bromofluorobenzene 8.06 " 8.00 101 83.5-119 88.8-117	Trichloroethene	24.1	1.0	"	20.0		120	75-125			
Surrogate 4-Bromofluorobenzene 8.06	Benzene	22.6	0.50	"	20.0		113	75-125			
Surrogate Pstromofluoromethane Substray Surrogate Pibromofluoromethane Surrogate Pibromofluoromethane Surrogate Pibromofluoromethane Surrogate Pibromofluoromethane Surrogate Pibromofluoromethane Surrogate Pibromofluoromethane Substray Substray	Toluene	22.9	0.50	"	20.0		114	75-125			
Surrogate Toluene-d8 Source: T121540-03 Prepared & Analyzed: 09/07/12 Source: T121540-03 Prepared & Analyzed: 09/07/12 Surrogate 21.3 1.0 ug/l 20.0 ND 106 75-125 Surrogate 21.0 " 20.0 ND 106 75-125 Surrogate 4-Bromofluorobenzene 21.3 0.50 " 20.0 ND 106 75-125 Surrogate 4-Bromofluorobenzene 21.3 0.50 " 20.0 ND 106 75-125 Surrogate 4-Bromofluorobenzene 21.3 0.50 " 20.0 ND 106 75-125 Surrogate 4-Bromofluoromethane 7.60 " 8.00 101 83.5-119 Surrogate Toluene-d8 8.01 " 8.00 100 88.8-117 Surrogate 22.3 1.0 ug/l 20.0 ND 112 75-125 4.81 20 1.1-Dichloroethene 22.4 1.0 " 20.0 ND 112 75-125 2.16 20 Trichloroethene 22.4 1.0 " 20.0 ND 113 75-125 2.16 20 Trichloroethene 22.4 0.50 " 20.0 ND 113 75-125 6.75 20 Senzene 23.1 0.50 " 20.0 ND 112 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate 4-Bromofluorobenzene 8.14 " 8.00 102 81-136 Surrog	Surrogate 4-Bromofluorobenzene	8.06		"	8.00		101	83.5-119			
Matrix Spike (2090703-MS1) Source: T121540-03 Prepared & Analyzed: 09/07/12 Chlorobenzene 21.3 1.0 ug/l 20.0 ND 106 75-125 I,1-Dichloroethene 22.0 1.0 " 20.0 ND 110 75-125 Trichloroethene 21.2 1.0 " 20.0 ND 105 75-125 Benzene 21.0 0.50 " 20.0 ND 106 75-125 Toluene 21.3 0.50 " 20.0 ND 106 75-125 Surrogate 4-Bromofluorobenzene 8.08 " 8.00 101 83.5-119 Surrogate Dibromofluoromethane 7.60 " 8.00 95.0 81-136 Surrogate Toluene-d8 8.01 " 8.00 100 88.8-117 Matrix Spike Dup (2090703-MSD1) Source: T121540-03 Prepared & Analyzed: 09/07/12 09/07/12 Chlorobenzene 22.3 1.0 ug/l 20.0 ND 112 75-125 4.	Surrogate Dibromofluoromethane	7.96		"	8.00		99.5	81-136			
Chlorobenzene 21.3 1.0 ug/l 20.0 ND 106 75-125 7	Surrogate Toluene-d8	8.06		"	8.00		101	88.8-117			
1,1-Dichloroethene 22.0 1.0 " 20.0 ND 110 75-125	Matrix Spike (2090703-MS1)	So	urce: T12154	10-03	Prepared	& Analyzo	ed: 09/07/	12			
Trichloroethene	Chlorobenzene	21.3	1.0	ug/l	20.0	ND	106	75-125			
Benzene 21.0 0.50 " 20.0 ND 105 75-125 Toluene 21.3 0.50 " 20.0 ND 106 75-125 Surrogate 4-Bromofluorobenzene 8.08 " 8.00 101 83.5-119 Surrogate Dibromofluoromethane 7.60 " 8.00 95.0 81-136 Surrogate Toluene-d8 8.01 " 8.00 100 88.8-117 Matrix Spike Dup (2090703-MSD1) Source: T121540-03 Prepared & Analyzed: 09/07/12 Chlorobenzene 22.3 1.0 ug/l 20.0 ND 112 75-125 4.81 20 1,1-Dichloroethene 22.4 1.0 " 20.0 ND 112 75-125 2.16 20 Trichloroethene 22.6 1.0 " 20.0 ND 113 75-125 6.75 20 Benzene 22.4 0.50 " 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 83.5-119	1,1-Dichloroethene	22.0	1.0	"	20.0	ND	110	75-125			
Toluene 21.3 0.50 " 20.0 ND 106 75-125	Trichloroethene	21.2	1.0	"	20.0	ND	106	75-125			
Surrogate 4-Bromofluorobenzene 8.08 " 8.00 101 83.5-119	Benzene	21.0	0.50	"	20.0	ND	105	75-125			
Surrogate Dibromofluoromethane 3.08 8.00 101 83.3-119 Surrogate Dibromofluoromethane 7.60 "8.00 95.0 81-136 Surrogate Toluene-d8 8.01 "8.00 100 88.8-117 Matrix Spike Dup (2090703-MSD1) Source: T121540-03 Prepared & Analyzed: 09/07/12 Chlorobenzene 22.3 1.0 ug/l 20.0 ND 112 75-125 4.81 20 1,1-Dichloroethene 22.4 1.0 "20.0 ND 112 75-125 2.16 20 Trichloroethene 22.6 1.0 20.0 ND 113 75-125 6.75 20 Benzene 22.4 0.50 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 8.00 102 81-136	Toluene	21.3	0.50	"	20.0	ND	106	75-125			
Surrogate Toluene-d8 8.01 " 8.00 100 88.8-117 Matrix Spike Dup (2090703-MSD1) Source: T121540-03 Prepared & Analyzed: 09/07/12 Chlorobenzene 22.3 1.0 ug/l 20.0 ND 112 75-125 4.81 20 1,1-Dichloroethene 22.4 1.0 " 20.0 ND 112 75-125 2.16 20 Trichloroethene 22.6 1.0 " 20.0 ND 113 75-125 6.75 20 Benzene 22.4 0.50 " 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Surrogate 4-Bromofluorobenzene	8.08		"	8.00		101	83.5-119			
Matrix Spike Dup (2090703-MSD1) Source: T121540-03 Prepared & Analyzed: 09/07/12 Chlorobenzene 22.3 1.0 ug/l 20.0 ND 112 75-125 4.81 20 1,1-Dichloroethene 22.4 1.0 " 20.0 ND 112 75-125 2.16 20 Trichloroethene 22.6 1.0 " 20.0 ND 113 75-125 6.75 20 Benzene 22.4 0.50 " 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Surrogate Dibromofluoromethane	7.60		"	8.00		95.0	81-136			
Chlorobenzene 22.3 1.0 ug/l 20.0 ND 112 75-125 4.81 20 1,1-Dichloroethene 22.4 1.0 " 20.0 ND 112 75-125 2.16 20 Trichloroethene 22.6 1.0 " 20.0 ND 113 75-125 6.75 20 Benzene 22.4 0.50 " 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Surrogate Toluene-d8	8.01		"	8.00		100	88.8-117			
Chlorobenzene 22.3 1.0 ug/l 20.0 ND 112 75-125 4.81 20 1,1-Dichloroethene 22.4 1.0 " 20.0 ND 112 75-125 2.16 20 Trichloroethene 22.6 1.0 " 20.0 ND 113 75-125 6.75 20 Benzene 22.4 0.50 " 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Matrix Spike Dup (2090703-MSD1)	So	urce: T12154	10-03	Prepared	& Analyze	ed: 09/07/	12			
Trichloroethene 22.6 1.0 " 20.0 ND 113 75-125 6.75 20 Benzene 22.4 0.50 " 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Chlorobenzene	22.3	1.0	ug/l					4.81	20	
Benzene 22.4 0.50 " 20.0 ND 112 75-125 6.91 20 Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	1,1-Dichloroethene	22.4	1.0	"	20.0	ND	112	75-125	2.16	20	
Toluene 23.1 0.50 " 20.0 ND 116 75-125 8.47 20 Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Trichloroethene	22.6	1.0	"	20.0	ND	113	75-125	6.75	20	
Surrogate 4-Bromofluorobenzene 8.17 " 8.00 102 83.5-119 Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Benzene	22.4	0.50	"	20.0	ND	112	75-125	6.91	20	
Surrogate Dibromofluoromethane 8.14 " 8.00 102 81-136	Toluene	23.1	0.50	"	20.0	ND	116	75-125	8.47	20	
	Surrogate 4-Bromofluorobenzene	8.17		"	8.00		102	83.5-119			
Surrogate Toluene-d8 8.03 " 8.00 100 88.8-117	Surrogate Dibromofluoromethane	8.14		"	8.00		102	81-136			
	Surrogate Toluene-d8	8.03		"	8.00		100	88.8-117			

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/11/12 15:04

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

E The concentration indicated for this analyte is above the calibration range of the instrument. This value should be considered as an

estimate as the actual value may be higher.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL Address: 2640 Walnut Ave, Unit F Phone: (714) 508-0800 Fax: (7 Project Manager: Jeremy Squire (7	14) 508-088					Pr Co	oject	Na or:	me: Fra	ne S	0[2 CENC Sosic 535	O		Pag Clie EDF	nt Pro	/ pject #:	OF _	001-300	- -
Sample ID	Date Sampled	Time	Sample Type	TPHg (8015 M)	VOCs (8260 B)									Total # of containers		Commer	nts/Prese	rvative	Laboratory ID #
LL_708_09051Z_01	9.5.12	9:39	GW	₩	₹		\vdash		\dashv	\dashv	+	++	+	5		Comme	113/1-1636	valive	01
12 709 090512 01	9.5.12	13:33	ĞW	Ŕ	\frac{1}{2}	+	+				+	++	+	6	 				02
44-710-090512-01	9.5.12	15:00	GW	Ŕ	प्री	+	 			$\neg +$	+			6					03
4 +11 090512 01	9.5.12	16:15	GW	父	X		+	Н	\dashv	\dashv		+	+	6		******			04
LL_TB_090512	10.12	10.13	Water	/ `	[\]	+	+	Н	-	\dashv	+	+		Ž	 				05
20.10.0/00/2			water		$ \cdot $	_	+	Н		\dashv	+	+	+	_				VIII.	+
	****		· · · · · · · · · · · · · · · · · · ·		\vdash				\neg	\dashv	+	++		\vdash					+
		<u> </u>		\vdash	\vdash	+	-	H		-+	+	++		\vdash	+-			******	+
				+	\vdash	\dashv	+	Н	\dashv	\dashv	_	++	+	 					+
				\vdash	-	+	+	\vdash	\dashv		+	+			+				+
Relinquished by: (signature)	Date / T	me	Received b	V: (S	ian / I	Date /	Time)		Tota	al # of	f conta	iners	+	26	+		Notes		
\sim \sim \sim			1	4	//		16:3	<i>3</i> 0				y seals			1		110100		
Relinquished by: (signature)	9-5-2012 Date / T	ime	Received			Date /			Seal		ct? Y/i good		5.		-				
Relinquished by: (signature) Date / Time Received by: (Sign / Date		Date /	Time)	Fime)															
							Turn around time: Standard												
Sample disposal Instructions: Disposal @ \$2.0	0 each	Return to	client		Picl	cup													

SAMPLE RECEIVING REVIEW SHEET

BATCH#				
Client Name: MUREX	Project:	CENCO		-
Received by: Sunsy	Date/Time Re	ceived:	9.5.12	16:30
Delivered by: Client SunStar Courier GSO	FedEx	Other		
Total number of coolers receivedO Temp c	riteria = 6°C	> 0°C (no	<u>frozen</u> coi	ntainers)
Temperature: cooler #1 $\underline{5.3}$ °C +/- the CF (-0.2°C) = $\underline{}$	<u>5.1</u> °C correc	ted temperati	ıre	
cooler #2°C +/- the CF (- 0.2°C) = _	°С соттес	ted temperati	ıre	
cooler #3°C +/- the CF (- 0.2°C) = _	°C correc	ted temperati	ıre	
Samples outside temp. but received on ice, w/in 6 hours of fin-	al sampling.	∑ Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample		□Yes	□No*	⊠N/A
Sample Containers Intact		⊠Yes	□No*	
Sample labels match COC ID's		⊠Yes	□No*	
Total number of containers received match COC		ĭYes	□No*	
Proper containers received for analyses requested on COC		⊠Yes	□No*	
Proper preservative indicated on COC/containers for analyses	requested	⊠Yes	□No*	□N/A
Complete shipment received in good condition with correct terpreservatives and within method specified holding times.			ibels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Co	ooler/Sample Re	view - Initia	als and date	St 9.5.12
Comments:				
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
•				

12 September 2012

Jeremy Squire Murex 15375 Barranca Parkway, Suite K-101 Irvine, CA 92861

RE: Cenco

Enclosed are the results of analyses for samples received by the laboratory on 09/06/12 16:41. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Katherine Shields

Katherine Shields For Wendy Hsiao Project Manager

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LL_712_090612_01	T121547-01	Water	09/06/12 11:30	09/06/12 16:41
LL_713_090612_01	T121547-02	Water	09/06/12 13:00	09/06/12 16:41
LL_714_090612_01	T121547-03	Water	09/06/12 14:00	09/06/12 16:41
LL_715_090612_01	T121547-04	Water	09/06/12 16:05	09/06/12 16:41
LL_TB_090612	T121547-05	Water	09/06/12 00:00	09/06/12 16:41

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_712_090612_01 T121547-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO)	10000	50	ug/l	1	2090731	09/07/12	09/11/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		129 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by E	PA Method 8260l	3						
Bromobenzene	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	12	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.9	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_712_090612_01 T121547-01 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	ì.	sunstar La	aboratori	ies, inc.				
Volatile Organic Compounds by								
1,2-Dichloropropane	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	50	1.0	"	"	"	"	"	"
o-Isopropyltoluene	1.7	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	49	1.0	"	"	"	"	"	"
n-Propylbenzene	53	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	33	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	88	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	1100	5.0	"	10	"	"	"	"
Toluene	27	0.50	"	1	"	"	"	"
Ethylbenzene	47	0.50	"	"	"	"	"	"
n,p-Xylene	110	1.0	"	"	"	"	"	"
-Xylene	40	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Fert-butyl alcohol	97	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_712_090612_01 T121547-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Volatile Organic	Compounds by	y EPA Method 8260B
--	-------------------------	--------------	--------------------

Di-isopropyl ether	ND	2.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	110	1.0	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		108 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		65.2 %	81-1	36	"	"	"	"	S-GC
Surrogate: Toluene-d8		95.2 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/12/12 16:54

LL_713_090612_01 T121547-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Purgeable	Petroleum	Hydrocarbons	by	EPA 8015C

C6-C12 (GRO)	9600	50	ug/l	1	2090731	09/07/12	09/11/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene		123 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by EPA	Method 8260B							
Bromobenzene	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	9.3	1.0	"	"	"	"	"	"
tert-Butylbenzene	1.2	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	**
Dibromochloromethane	ND	1.0	"	"	"	"	"	**
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_713_090612_01 T121547-02 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

1,3-Dichloropropane	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	54	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	14	1.0	"	"	"	"	"	"	
n-Propylbenzene	66	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	1600	5.0	"	10	"	"	"	"	E
Гoluene	3.5	0.50	"	1	"	"	"	"	
Ethylbenzene	6.4	0.50	"	"	"	"	"	"	
m,p-Xylene	6.8	1.0	"	"	"	"	"	"	
o-Xylene	1.5	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	75	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_713_090612_01 T121547-02 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	2.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B	_
Methyl tert-butyl ether	410	10	"	10	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	1	"	"	"	11	
Surrogate: 4-Bromofluorobenzene		122 %	83.5-	119	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		70.9 %	81-1	36	"	"	"	"	S-GC
Surrogate: Toluene-d8		96.0 %	88.8-	117	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

Reported: 09/12/12 16:54

LL_714_090612_01 T121547-03 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

C6-C12 (GRO) 50	00 50	ug/l	1	2090731	09/07/12	09/11/12	EPA 8015C
Surrogate: 4-Bromofluorobenzene	117 %	72.6	5-146	"	"	"	"
Volatile Organic Compounds by EPA Method	8260B						
Bromobenzene N	D 1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B
Bromochloromethane N	D 1.0	"	"	"	"	"	"
Bromodichloromethane N	D 1.0	"	"	"	"	"	"
Bromoform	D 1.0	"	"	"	"	"	"
Bromomethane	D 1.0	"	"	"	"	"	"
n-Butylbenzene N	D 1.0	"	"	"	"	"	"
sec-Butylbenzene 1	.3 1.0	"	"	"	"	"	"
tert-Butylbenzene N	D 1.0	"	"	"	"	"	"
Carbon tetrachloride N	D 0.50	"	"	"	"	"	"
Chlorobenzene	D 1.0	"	"	"	"	"	"
Chloroethane	D 1.0	"	"	"	"	"	"
Chloroform	D 1.0	"	"	"	"	"	"
Chloromethane	D 1.0	"	"	"	"	"	"
2-Chlorotoluene N	D 1.0	"	"	"	"	"	"
4-Chlorotoluene N	D 1.0	"	"	"	"	"	"
Dibromochloromethane N	D 1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	D 1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	D 1.0	"	"	"	"	"	"
Dibromomethane	D 1.0	"	"	"	"	"	"
1,2-Dichlorobenzene N	D 1.0	"	"	"	"	"	"
1,3-Dichlorobenzene N	D 1.0	"	"	"	"	"	"
1,4-Dichlorobenzene N	D 1.0	"	"	"	"	"	"
Dichlorodifluoromethane N	D 0.50	"	"	"	"	"	"
1,1-Dichloroethane	D 1.0	"	"	"	"	"	"
1,2-Dichloroethane	D 0.50	"	"	"	"	"	"
1,1-Dichloroethene N	D 1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene N	D 1.0	"	"	"	"	"	"
	D 1.0	"	"	"	"	"	"
	D 1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_714_090612_01 T121547-03 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		ounstal La	ibol atol i	cs, 111c.				
Volatile Organic Compounds by I	EPA Method 8260B	.						
1,3-Dichloropropane	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	8.2	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	1.9	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	1.6	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"
Ethylbenzene	ND	0.50	"	"	"	"	"	"
m,p-Xylene	ND	1.0	"	"	"	"	"	"
o-Xylene	ND	0.50	"	"	"	"	"	"
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
Tert-butyl alcohol	ND	10	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_714_090612_01 T121547-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	G	C4 T	1 4	· T					

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Di-isopropyl ether	ND	2.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	2.3	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		115 %	83.5-	119	"	"	"	"			
Surrogate: Dibromofluoromethane		63.1 %	81-1	36	"	"	"	"	S-GC		
Surrogate: Toluene-d8		95.2 %	88.8-	117	"	"	"	"			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Irvine CA, 92861 Project Manager: Jeremy Squire

610

Reported: 09/12/12 16:54

EPA 8015C

LL_715_090612_01 T121547-04 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

ug/l

2090731

09/07/12

09/11/12

50

Durgoshla	Detroloum	Hydrocarbons	by FDA	2015C
Purgeable	Petroleum	i myurocarbons	DVEPA	90120

C6-C12 (GRO)

Surrogate: 4-Bromofluorobenzene		116 %	72.6-	146	"	"	"	"
Volatile Organic Compounds by El	PA Method 8260E	3						
Bromobenzene	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B
Bromochloromethane	ND	1.0	"	"	"	"	"	"
Bromodichloromethane	ND	1.0	"	"	"	"	"	"
Bromoform	ND	1.0	"	"	"	"	"	"
Bromomethane	ND	1.0	"	"	"	"	"	"
n-Butylbenzene	ND	1.0	"	"	"	"	"	"
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
1,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_715_090612_01 T121547-04 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

2-Dichloropropane	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260E
3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1-Dichloropropene	ND	1.0	"	"	"	"	"	"
s-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	4.0	1.0	"	"	"	"	"	"
Isopropyltoluene	ND	1.0	"	"	"	"	"	"
lethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
Propylbenzene	6.9	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	11	0.50	"	"	"	"	"	"
oluene	0.56	0.50	"	"	"	"	"	"
thylbenzene	62	0.50	"	"	"	"	"	"
,p-Xylene	ND	1.0	"	"	"	"	"	"
Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

MurexProject: Cenco15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

LL_715_090612_01 T121547-04 (Water)

ı									
		Reporting							
ı	Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B											
Tert-butyl alcohol	ND	10	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B			
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	1.2	1.0	"	"	"	"	"	"			
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"	"	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		96.4 %	83.5-	119	"	"	"	"			
Surrogate: Dibromofluoromethane		102 %	81-1	36	"	"	"	"			
Surrogate: Toluene-d8		91.2 %	88.8-	117	"	"	"	"			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/12/12 16:54

LL_TB_090612 T121547-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Bromobenzene	ND	1.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260E
romochloromethane	ND	1.0	"	"	"	"	"	"
Fromodichloromethane	ND	1.0	"	"	"	"	"	"
Gromoform	ND	1.0	"	"	"	"	"	"
Fromomethane	ND	1.0	"	"	"	"	"	"
-Butylbenzene	ND	1.0	"	"	"	"	"	"
ec-Butylbenzene	ND	1.0	"	"	"	"	"	"
ert-Butylbenzene	ND	1.0	"	"	"	"	"	"
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"
Chlorobenzene	ND	1.0	"	"	"	"	"	"
Chloroethane	ND	1.0	"	"	"	"	"	"
Chloroform	ND	1.0	"	"	"	"	"	"
Chloromethane	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
-Chlorotoluene	ND	1.0	"	"	"	"	"	"
Dibromochloromethane	ND	1.0	"	"	"	"	"	"
,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"
,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"
Dibromomethane	ND	1.0	"	"	"	"	"	"
,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethane	ND	1.0	"	"	"	"	"	"
,2-Dichloroethane	ND	0.50	"	"	"	"	"	"
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 **Reported:**Irvine CA, 92861 Project Manager: Jeremy Squire 09/12/12 16:54

LL_TB_090612 T121547-05 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

s-1,3-Dichloropropene	ND	0.50	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260E
ans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
exachlorobutadiene	ND	1.0	"	"	"	"	"	"
opropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Iethylene chloride	ND	1.0	"	"	"	"	"	"
aphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"
thylbenzene	ND	0.50	"	"	"	"	"	"
ı,p-Xylene	ND	1.0	"	"	"	"	"	"
-Xylene	ND	0.50	"	"	"	"	"	"
ert-amyl methyl ether	ND	2.0	"	"	"	"	"	"
ert-butyl alcohol	ND	10	"	"	"	"	"	"
i-isopropyl ether	ND	2.0	"	"	"	"	"	"
thyl tert-butyl ether	ND	2.0	"	"	"	"	"	"
lethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Murex Project: Cenco
15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 09/12/12 16:54

LL_TB_090612 T121547-05 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	ug/l	1	2090729	09/07/12	09/11/12	EPA 8260B	
Surrogate: 4-Bromofluorobenzene		91.8 %	83.5-119)	"	"	"	"	
Surrogate: Dibromofluoromethane		94.9 %	81-136		"	"	"	"	
Surrogate: Toluene-d8		91.4 %	88.8-117	7	"	"	"	"	

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/12/12 16:54

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2090731 - EPA 5030 GC										
Blank (2090731-BLK1)				Prepared:	09/07/12	Analyzed	1: 09/11/12			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate 4-Bromofluorobenzene	128		"	100		128	72.6-146			
LCS (2090731-BS1)				Prepared:	09/07/12	Analyzed	1: 09/11/12			
C6-C12 (GRO)	5640	50	ug/l	5500		102	75-125			
Surrogate 4-Bromofluorobenzene	118		"	100		118	72.6-146			
LCS Dup (2090731-BSD1)				Prepared:	09/07/12	Analyzed	1: 09/11/12			
C6-C12 (GRO)	5890	50	ug/l	5500	·	107	75-125	4.48	20	
Surrogate 4-Bromofluorobenzene	125		"	100		125	72.6-146			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported: Irvine CA, 92861 Project Manager: Jeremy Squire 09/12/12 16:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2090729 - EPA 5030 GCMS										
Blank (2090729-BLK1)				Prepared:	09/07/12	Analyzed	: 09/11/12			
Bromobenzene	ND	1.0	ug/l							
Bromochloromethane	ND	1.0	"							
Bromodichloromethane	ND	1.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
tert-Butylbenzene	ND	1.0	"							
Carbon tetrachloride	ND	0.50	"							
Chlorobenzene	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	1.0	"							
Chloromethane	ND	1.0	"							
2-Chlorotoluene	ND	1.0	"							
4-Chlorotoluene	ND	1.0	"							
Dibromochloromethane	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
Dibromomethane	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50	"							
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50	"							
1,1-Dichloroethene	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0	"							
1,1-Dichloropropene	ND	1.0	"							
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50	"							
Hexachlorobutadiene	ND	1.0	"							
Isopropylbenzene	ND	1.0	"							

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

RPD

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:
Irvine CA, 92861 Project Manager: Jeremy Squire 09/12/12 16:54

Reporting

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2090729 - EPA 5030 GCMS										
Blank (2090729-BLK1)				Prepared:	09/07/12	Analyzed	1: 09/11/12			
p-Isopropyltoluene	ND	1.0	ug/l							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0	"							
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,4-Trichlorobenzene	ND	1.0	"							
1,1,2-Trichloroethane	ND	1.0	"							
1,1,1-Trichloroethane	ND	1.0	"							
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
Vinyl chloride	ND	1.0	"							
Benzene	ND	0.50	"							
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50	"							
m,p-Xylene	ND	1.0	"							
o-Xylene	ND	0.50	"							
Tert-amyl methyl ether	ND	2.0	"							
Tert-butyl alcohol	ND	10	"							
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	5.0	"							
Surrogate 4-Bromofluorobenzene	7.50		"	8.00		93.8	83.5-119			
Surrogate Dibromofluoromethane	4.83		"	8.00		60.4	81-136			S-G
Surrogate Toluene-d8	7.07		"	8.00		88.4	88.8-117			S-G

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

%REC

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101Project Number: 1003-001-300Reported:Irvine CA, 92861Project Manager: Jeremy Squire09/12/12 16:54

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2090729 - EPA 5030 GCMS										
LCS (2090729-BS1)				Prepared:	09/07/12	Analyzed	1: 09/11/12			
Chlorobenzene	21.2	1.0	ug/l	20.0		106	75-125			
1,1-Dichloroethene	16.4	1.0	"	20.0		82.2	75-125			
Trichloroethene	19.4	1.0	"	20.0		97.2	75-125			
Benzene	20.3	0.50	"	20.0		101	75-125			
Toluene	19.5	0.50	"	20.0		97.3	75-125			
Surrogate 4-Bromofluorobenzene	8.17		"	8.00		102	83.5-119			
Surrogate Dibromofluoromethane	7.53		"	8.00		94.1	81-136			
Surrogate Toluene-d8	8.04		"	8.00		100	88.8-117			
LCS Dup (2090729-BSD1)				Prepared:	09/07/12	Analyzed	1: 09/11/12			
Chlorobenzene	20.4	1.0	ug/l	20.0		102	75-125	4.04	20	
1,1-Dichloroethene	17.6	1.0	"	20.0		88.0	75-125	6.75	20	
Trichloroethene	19.2	1.0	"	20.0		96.0	75-125	1.24	20	
Benzene	19.1	0.50	"	20.0		95.6	75-125	5.84	20	
Toluene	18.7	0.50	"	20.0		93.4	75-125	4.14	20	
Surrogate 4-Bromofluorobenzene	7.97		"	8.00		99.6	83.5-119			
Surrogate Dibromofluoromethane	7.15		"	8.00		89.4	81-136			
Surrogate Toluene-d8	7.84		"	8.00		98.0	88.8-117			

SunStar Laboratories, Inc.

Murex Project: Cenco

15375 Barranca Parkway, Suite K-101 Project Number: 1003-001-300 Reported:

Irvine CA, 92861 Project Manager: Jeremy Squire 09/12/12 16:54

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

E The concentration indicated for this analyte is above the calibration range of the instrument. This value should be considered as an

estimate as the actual value may be higher.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Chain of Custody Record

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Client: MUREX ENVIRONMENTAL	INC.							-				01:	_			Pag	ge:	1	_ OF _		
Address: 2640 Walnut Ave, Unit F							_					CEN									
Phone: (714) 508-0800 Fax: (7	'14) 508-088	0										Sosi						oject#:	1003	-001-300)
Project Manager: Jeremy Squire (7					Batch #:			T121547						_EDI	= #: <u> </u>				-		
Sample ID <u>L/_712_090612_01</u> <u>L/_713_090612_01</u> <u>L/_714_090612_01</u> <u>L/_715_090612_01</u> <u>L/_718_090612</u>	Date Sampled 9.6.12 9.6.12 9.6.12 9.6.12	Time :35 3:00 4:00 6:05	Sample Type GW GW GW GW Water	XXXTPHg (8015 M)	XXXXVOCs (8260 B)											N ON O Total # of containers		Commer	its/Prese	ervative	02 03 04 05
						-						$\frac{1}{1}$	+								
													+								
Relinquished by: (signature)	Date / T 9-6-2012		Received I	by: (S	Sign / フ っ	Date	e / Ti -/12	me)	a			of cont				26 J	-		Note	S	
Relinquished by: (signature)	Date / T		Received I	by: (S	Sign /	Date	e / Ti	me)	- 1			act? Y		Α		/A	<u> </u>				
Relinquished by: (signature)	Date / T	ime	Received I	by: (S	Sign /	Date	e / Ti	me)	\dashv			l good /cold			Y	•	3.2	-			
										Turi	n arc	ound t	time	:	Stand	lard					
Sample disposal Instructions: Disposal @ \$2.0	00 each	Return t	o client	-	Pic	ckup															

SAMPLE RECEIVING REVIEW SHEET

BATCH# 7/2/547				
Client Name: Muker	Project:	CENCO		
Received by: DAN	Date/Time Rec	ceived:	9.6.12	16:41
Delivered by: Client SunStar Courier GSO	FedEx	Other		
Total number of coolers received O Temp o	riteria = 6°C	> 0°C (no	<u>frozen</u> cor	itainers)
Temperature: cooler #1 3.4 °C +/- the CF (-0.2°C) =	3.2 °C correc	ted temperatu	ıre	
cooler #2°C +/- the CF (- 0.2°C) =	°С соггес	ted temperati	ıre	
cooler #3 $\underline{}$ °C +/- the CF (- 0.2°C) =	°C correc	ted temperati	ıre	
Samples outside temp. but received on ice, w/in 6 hours of fir	al sampling.	⊠Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample		□Yes	□No*	⊠N/A
Sample Containers Intact		ĭ₹Yes	□No*	
Sample labels match COC ID's		∑Yes	□No*	
Total number of containers received match COC		∑Yes	□No*	
Proper containers received for analyses requested on COC		⊠Yes	□No*	
Proper preservative indicated on COC/containers for analyses	requested	⊠Yes	□No*	□N/A
Complete shipment received in good condition with correct to preservatives and within method specified holding times.		-	ibels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked C	ooler/Sample Re	view - Initia	als and date	Sz 9.7.12
Comments:				
	Average of the second s			

